Haematological and biochemical alterations induced by sodium metavanadate toxicity in male Wistar rats
DOI:
https://doi.org/10.55779/nsb17212395Keywords:
acute toxicity, haematology, liver histology, oxidative stress, sodium metavanadateAbstract
Sodium metavanadate (SMV) is an inorganic compound that can enter the human body through multiple pathways, including inhalation, ingestion, dermal absorption, or intentional consumption. The present study evaluated the toxicity profile of SVM and its impact on haematological and biochemical parameters using Wistar rat models. Ten (10) healthy male mice (20-30 g) and twenty (20) male Wistar rats (180-200 g) were used for acute toxicity and experimental studies, respectively. The median lethal dose (LD₅₀) of sodium metavanadate (SMV) was determined using Lorke’s method. The twenty (20) male Wistar rats were randomly assigned into four (4) groups (n = 5 per group). Group I served as the control and received tap water, while Groups II, III, and IV were administered 7.5, 15, and 30 mg/kg of SMV, respectively via oral gavage for twenty-eight (28) days. Blood samples were collected for haematological and biochemical analysis following standard protocols. Also, Liver tissue samples were harvested and analysed histologically to assess structural alterations. The LD₅₀ of SMV was determined to be 80 mg/kg. The findings from this study indicate that SMV exposure resulted in a significant decrease in superoxide dismutase, catalase, glutathione, plasma albumin, packed cell volume, haemoglobin concentration, red blood cells, white blood cells, and lymphocyte counts in the experimental groups compared to the control (p < 0.05). Conversely, a significant increase was observed in the mean levels of malondialdehyde, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total protein among the experimental animals relative to the control (p<0.05). Histopathological analysis of liver tissue further revealed pronounced Kupffer cell hypertrophy, sinusoidal congestion, and disruption of hepatic architecture. Evidence from this study suggests that SMV exposure may induce anaemia and immunosuppression by disrupting red and white blood cell indices. This effect is likely mediated through increased oxidative stress, which contributes to hepatotoxicity and structural alterations in liver cytoarchitecture.
Metrics
References
Adebiyi OE, Olopade JO, Olayemi FO (2018). Sodium metavanadate induced cognitive decline, behavioral impairments, oxidative stress and down regulation of myelin basic protein in mice hippocampus: Ameliorative roles of β‐spinasterol, and stigmasterol. Brain and Behavior 8(7):e01014. https://doi.org/10.1002/brb3.1014
Albus U (2012). Guide for the care and use of laboratory animals (8th edn). SAGE Publications Sage UK: London, England. https://doi.org/10.1258/la.2012.150312
Amaral LM, Moniz T, Silva AM, Rangel M (2023). Vanadium compounds with antidiabetic potential. International Journal of Molecular Sciences 24(21):15675. https://doi.org/10.3390/ijms242115675
Awajiomowa J, Chinko BC, Green KI (2022). Haematological Parameters and oxidative stress changes in apparently healthy pregnant women in Bori, Nigeria. International Journal of Research and Reports in Hematology 5(4):30-39.
Barceloux DG, Barceloux D (1999). Vanadium. Journal of Toxicology: Clinical Toxicology 37(2):265-278. https://doi.org/10.1081/CLT-100102425
Brenda C-T, Norma R-F, Bizarro-Nevares P, Carrasco-Ramírez E, Nelly L-V, Marcela R-L, Martha U-C, Teresa F (2023). Ultrastructural alterations due to sodium metavanadate treatment in the blood stages of Plasmodium yoelii yoelii. Journal of Trace Elements in Medicine and Biology 80:127314. https://doi.org/10.1016/j.jtemb.2023.127314
Chen H, Zhu, C, Zhou, X (2023). Effects of lead and cadmium combined heavy metals on liver function and lipid metabolism in mice. Biological Trace Element Research 201(6):2864-2876. https://doi.org/10.1007/s12011-022-03390-5
Chinedu E, Arome D, Ameh FS (2013). A new method for determining acute toxicity in animal models. Toxicology International 20(3):224. https://doi.org/10.4103/0971-6580.121674
Chinko BC, Amah-Tariah FS, Ekenna IC (2022). Evaluation of the effects of calabash chalk on the haematological profile of Wistar rats. Notulae Scientia Biologicae 14(3):11281-11281. https://doi.org/10.15835/nsb14311281
Chinko BC, Dapper DV, Adienbo OM, Egwurugwu JN, Uchefuna RC (2016). Biochemical Evaluation of the Effects of Hydromethanolic Extracts of Dioscorea bulbifera in Wistar Rats. IOSR Journal of Dental and Medical Sciences 5(9):105-110. https://doi.org/10.9790/0853-150909105110
Chinko BC, Pughikumo DT (2023). Haematological and hepatorenal alterations induced by potash (akanwu) on male Wistar rats. International Blood Research & Reviews 14(1):38-46. https://doi.org/10.9734/ibrr/2023/v14i1300
Chinko BC, Pughikumo DT, Obia O, Udeh WC, Hart, VO (2023). Honey attenuates phenylhydrazine-induced hematotoxicity and oxidative stress in male Wistar rats. International Blood Research & Reviews 14(3):10-18. https://doi.org/10.9734/ibrr/2023/v14i3308
Chinko BC, Umeh OU (2023). Alterations in Lipid profile and oxidative stress markers following heat stress on Wistar rats: Ameliorating role of vitamin C. Biomedical Sciences 9(1):12-17. https://doi.org/10.11648/j.bs.20230901.13
Cobankara V, Oran B, Ozatli D, Haznedaroglu IC, Kosar A, Buyukasik Y, Ozcebe O, Dundar S, Kirazli S (2001). Cytokines, endothelium, and adhesive molecules in pathologic thrombopoiesis. Clinical and Applied Thrombosis/Hemostasis 7(2):126-130. https://doi.org/10.1177/107602960100700209
Cortijo J, Villagrasa V, Martí‐Cabrera M, Villar V, Moreau J, Advenier C, Morcillo EJ, Small RC (1997). The spasmogenic effects of vanadate in human isolated bronchus. British Journal of Pharmacology 121(7):1339-1349. https://doi.org/10.1038/sj.bjp.0701277
D’Cruz OJ, Dong, Y, Uckun FM (2003). Potent dual anti-HIV and spermicidal activities of novel oxovanadium (V) complexes with thiourea non-nucleoside inhibitors of HIV-1 reverse transcriptase. Biochemical and Biophysical Research Communications 302(2):253-264. https://doi.org/10.1016/s0006-291x(03)00161-x
Daubry TME, Adienbo OM, Ovili-Odili BZ, Chinko, BC (2024). Ameliorative effects of N-Acetyl Cysteine and zinc sulfate on reproductive dysfunction induced by short-term crude oil exposure in male Wistar rats. Asian Journal of Medicine and Health 22(11):1-11. https://doi.org/10.9734/ajmah/2024/v22i111111
Desaulniers D, Cummings-Lorbetskie C, Leingartner K, Xiao, G-H, Zhou G, Parfett C (2021). Effects of vanadium (sodium metavanadate) and aflatoxin-B1 on cytochrome p450 activities, DNA damage and DNA methylation in human liver cell lines. Toxicology in Vitro 70:105036. https://doi.org/10.1016/j.tiv.2020.105036
Di Gioacchino M, Sabbioni E, Di Giampaolo L, Schiavone C, Di Sciascio MB, Reale M, Verna N, Qiao N, Paganelli R, Conti P (2002). In vitro effects of vanadate on human immune functions. Annals of Clinical & Laboratory Science 32(2):148-154.
Dikshith TSS (2013). Hazardous chemicals: Safety management and global regulations. CRC Press. https://doi.org/10.1201/b14758
Domingo JL, Gómez, M (2016). Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food and Chemical Toxicology 95:137-141. https://doi.org/10.1016/j.fct.2016.07.005
Evangelou AM (2002). Vanadium in cancer treatment. Critical Reviews in Oncology/Hematology 42(3):249-265. https://doi.org/10.1016/S1040-8428(01)00221-9
Fatola OI, Olaolorun FA, Olopade FE, Olopade JO (2019). Trends in vanadium neurotoxicity. Brain Research Bulletin, 145:75-80. https://doi.org/10.1016/j.brainresbull.2018.03.010
Föller M, Sopjani M, Mahmud H, Lang F (2008). Vanadate-induced suicidal erythrocyte death. Kidney and Blood Pressure Research 31(2):87-93. https://doi.org/10.1159/000119704
Fortoul TI, Rodriguez-Lara V, González-Villalva A, Rojas-Lemus M Cano-Gutiérrez G, Ustarroz-Cano M, Colín-Barenque L, Bizarro-Nevares P, García-Pealez I, Montaño LF (2014). Inhalation of vanadium pentoxide and its toxic effects in a mouse model. Inorganica Chimica Acta 420:8-15. https://doi.org/10.1016/j.ica.2014.03.027
Frawley R, Johnson VJ, Burleson GR, Shockley KR, Cesta MF, Travlos G, Cora M, Roberts G, Germolec D (2023). Evaluation of immunotoxicity of sodium metavanadate following drinking water exposure in female B6C3F1/N mice in a 28‐day study. Journal of Applied Toxicology 43(11):1686-1701. https://doi.org/10.1002/jat.4508
Garcia KL (2014). The mechanism of toxicity of decavanadate, metavanadate, and vanadyl sulfate. St. John's University, New York. ProQuest Dissertations & Theses.
Gaweł S, Wardas M, Niedworok E, Wardas P (2004). Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci lekarskie 57(9-10):453-455.
Gowda S, Desai PB, Hull VV, Avinash AK, Vernekar SN, Kulkarni, SS (2009). A review on laboratory liver function tests. The Pan African Medical Journal 3(17):1-11.
Hall P, Cash J (2012). What is the real function of the liver ‘function’tests? The Ulster Medical Journal 81(1):30.
Hann H-W, Wan S, Myers RE, Hann RS, Xing J, Chen B, Yan H (2012). Comprehensive analysis of common serum liver enzymes as prospective predictors of hepatocellular carcinoma in HBV patients. PLoS One 7(10):e47687. https://doi.org/0.1371/journal.pone.0047687
Hoekstra LT, de Graaf W, Nibourg GAA, Heger M, Bennink RJ, Stieger B, van Gulik TM (2013). Physiological and biochemical basis of clinical liver function tests: A review. Annals of Surgery 257(1):27-36. https://doi.org/10.1097/SLA.0b013e31825d5d47
Hosseini M-J, Shaki F, Ghazi-Khansari M, Pourahmad J (2013). Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics 5(2):152-166. https://doi.org/10.1039/c2mt20198d
Huang J-H, Huang F, Evans L, Glasauer S (2015). Vanadium: Global (bio) geochemistry. Chemical Geology 417:68-89. https://doi.org/10.1016/j.chemgeo.2015.09.019
Jagdish RK, Maras JS, Sarin SK (2021). Albumin in advanced liver diseases: The good and bad of a drug! Hepatology 74(5):2848-2862. https://doi.org/10.1002/hep.31836
Kordala N, Wyszkowski M (2024). Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 29(5):1069. https://doi.org/10.3390/molecules29051069
Levy G, Hill MJ, Plowden TC, Catherino WH, Armstrong AY (2013). Biomarkers in uterine leiomyoma. Fertility and Sterility 99(4):1146-1152. https://doi.org/10.1016/j.fertnstert.2012.10.048
Li P, Ma X, Huang G (2024). Understanding thrombosis: The critical role of oxidative stress. Hematology 29(1):2301633. https://doi.org/10.1080/16078454.2023.2301633
Llobet JM, Domingo JL. (1984). Acute toxicity of vanadium compounds in rats and mice. Toxicology Letters 23(2):227-231. https://doi.org/10.1016/0378-4274(84)90131-0
Loi F, Pilo G, Franzoni G, Re R, Fusi F, Bertocchi L, Santucci U, Lorenzi V, Rolesu S, Nicolussi P (2021). Welfare assessment: Correspondence analysis of welfare score and hematological and biochemical profiles of dairy cows in Sardinia Italy. Animals 11(3):854. https://doi.org/10.3390/ani11030854
Lorke D (1983). A new approach to practical acute toxicity testing. Archives of Toxicology 54(4):275-287. https://doi.org/10.1007/BF01234480
Macpherson I, Abeysekera KWM, Harris R, Mansour D, McPherson S, Rowe I, Rosenberg W, Dillon JF, Yeoman A (2022). Identification of liver disease: Why and how. Frontline Gastroenterology 13(5):67-373. https://doi.org/10.1136/flgastro-2021-101833
Marwicka J, Zięba A (2021) Antioxidants as a defence against reactive oxygen species. Aesthetic Cosmetology and Medicine 10:271-276. https://doi.org/10.52336/acm.2021.10.6.02
McNicol A, Robertson C, Gerrard JM (1993). Vanadate activates platelets by enhancing arachidonic acid release. Blood 81(9):2329-2338. https://doi.org/10.1182/blood.V81.9.2329.2329
Moman RN, Gupta N, Varacallo M (2017). Physiology, albumin. StatPearls Publishing LLC.
National Research Council of The National Academies (2011). Guide for the Care and Use of Laboratory Animals (8th Edition). National Academic Press, Wahington D.C.
Nnama AU, Ekeh FN, Aguzie IO Udegbunam, SO, Nwani CD (2022). Vanadium pentoxide induces hematological, oxidative stress and histological changes in Oryctolagus cuniculus. Journal of Hazardous Materials Advances 5:100048. https://doi.org/10.1016/j.hazadv.2022.100048
Obianime A, Gogo-Abite M, Roberts I (2009). The effects of Ammonium metavanadate on biochemical hormonal, haematological and histopathological parameters of the female Wistar rats. Nigerian Journal of Physiological Sciences 24(2):187-194. https://doi.org/10.4314/njps.v24i2.52905
Olopade JO, Connor JR (2011). Vanadium and neurotoxicity: A review. Current Topics in Toxicology 7:33-39.
Omayone T, Salami AT, Odukanmi AO, Olaleye SB (2020). Dose-dependent changes in haematological and serum biochemical variables in rats exposed to sodium metavandate in male Wistar rats. Nigerian Journal of Physiological Sciences 35(2):147-153.
Passantino L, Muñoz AB, Costa M (2013). Sodium metavanadate exhibits carcinogenic tendencies in vitro in immortalized human bronchial epithelial cells. Metallomics 5(10):1357-1367. https://doi.org/10.1039/c3mt00149k
Pessoa JC, Etcheverry S, Gambino D (2015). Vanadium compounds in medicine. Coordination Chemistry Reviews 301:24-48. https://doi.org/10.1016/j.ccr.2014.12.002
Pugazhenthi S, Hussain A, Yu B, Brownsey RW, Angel JF, Khandelwal RL (1995). Vanadate induces normolipidemia and a reduction in the levels of hepatic lipogenic enzymes in obese Zucker rat. Vanadium Compounds: Biochemical and Therapeutic Applications 153(1-2):211-215. https://doi.org/10.1007/BF01075940
Rattner BA, McKernan MA, Eisenreich KM, Link WA, Olsen GH, Hoffman DJ, Knowles KA, McGowan PC (2006). Toxicity and hazard of vanadium to mallard ducks (Anas platyrhynchos) and Canada geese (Branta canadensis). Journal of Toxicology and Environmental Health Part A 69(4):331-351. https://doi.org/10.1080/15287390500398265
Rehder D (2013). Vanadium. Its Role for Humans. In: Sigel A, Sigel H, Sigel R (Eds). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7500-8_5
Rojas-Lemus M, Bizarro-Nevares P, López-Valdez N, González-Villalva A, Guerrero-Palomo G, Cervantes-Valencia ME, Tavera-Cabrera O, Rivera-Fernández N, Casarrubias-Tabarez B and Ustarroz-Cano M (2020). Oxidative stress and vanadium. Genotoxic Mutagen Mechan Test Methods 3:1-19. https://doi.org/10.5772/intechopen.90861
Ścibior A, Kurus J (2019). Vanadium and oxidative stress markers-in vivo model: A review. Current Medicinal Chemistry 26(29):5456-5500. https://doi.org/10.2174/0929867326666190108112255
Shechter Y (1998). Insulin-like effects of vanadium: Mechanisms of action, clinical and basic implications. Letters in Peptide Science 5:319-322. https://doi.org/10.1023/A:1008822803321
Suwalsky M, Fierro P, Villena F, Gallardo MJ, Jemiola-Rzeminska M, Strzalka, K Gul-Hinc S, Ronowska A, Zysk, M, Szutowicz A (2013). Effects of sodium metavanadate on in vitro neuroblastoma and red blood cells. Archives of Biochemistry and Biophysics 535(2):248-256. https://doi.org/10.1016/j.abb.2013.04.006
Szklarzewicz J, Jurowska A, Hodorowicz M, Kazek G, Głuch-Lutwin M, Sapa J (2021). Ligand role on insulin-mimetic properties of vanadium complexes. Structural and biological studies. Inorganica Chimica Acta 516:120135. https://doi.org/10.1016/j.ica.2020.120135
Tian Y, Qi H, Wang G, Li L, Zhou D (2021). Anticancer effect of sodium metavanadate on murine breast cancer both in vitro and in vivo. Biometals 34:557-571. https://doi.org/10.1007/s10534-021-00295-z
Usende IL, Alimba CG, Emikpe BO, Bakare AA, Olopade JO (2018). Intraperitoneal sodium metavanadate exposure induced severe clinicopathological alterations, hepato-renal toxicity and cytogenotoxicity in African giant rats (Cricetomys gambianus, Waterhouse, 1840). Environmental Science and Pollution Research 25:26383-26393. https://doi.org/10.1007/s11356-018-2588-8
Usende IL, Olopade JO, Emikpe BO, Oyagbemi AA, Adedapo AA (2018). Oxidative stress changes observed in selected organs of African giant rats (Cricetomys gambianus) exposed to sodium metavanadate. International Journal of Veterinary Science and Medicine 6(1):80-89. https://doi.org/10.1016/j.ijvsm.2018.03.004
Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan L, Zhang T, Wang J, Zhang F (2020). Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biology 32:101500. https://doi.org/10.1016/j.redox.2020.101500
Wu J-X, Hong Y-H, Yang X-G (2016). Bis (acetylacetonato)-oxidovanadium (IV) and sodium metavanadate inhibit cell proliferation via ROS-induced sustained MAPK/ERK activation but with elevated AKT activity in human pancreatic cancer AsPC-1 cells. JBIC Journal of Biological Inorganic Chemistry 21:919-929. https://doi.org/10.1007/s00775-016-1389-0
Xie M, Chen D, Zhang F, Willsky GR, Crans DC, Ding W (2014). Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. Journal of Inorganic Biochemistry 136:47-56. https://doi.org/10.1016/j.jinorgbio.2014.03.011
Yeh C-C, Wu J-Y, Lee G-L, Wen H-T, Lin P, Kuo C-C (2019). Vanadium derivative exposure promotes functional alterations of VSMCs and consequent atherosclerosis via ROS/p38/NF-κB-mediated IL-6 production. International Journal of Molecular Sciences 20(24):6115. https://doi.org/10.3390/ijms20246115
Zaporowska H, Wasilewski W (1992). Haematological results of vanadium intoxication in Wistar rats. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 101(1):57-61. https://doi.org/10.1016/0742-8413(92)90199-H
Zhang B, Zhang H, He J, Zhou S, Dong H, Rinklebe Jr, Ok YS (2023). Vanadium in the environment: Biogeochemistry and bioremediation. Environmental Science & Technology 57(39):14770-14786. https://doi.org/10.1021/acs.est.3c04508
Zwolak I (2020). Protective effects of dietary antioxidants against vanadium‐induced toxicity: A review. Oxidative Medicine and Cellular Longevity 2020(1):1490316. https://doi.org/10.1155/2020/1490316
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ogechukwu G. ONUOHA, Bruno C. CHINKO

This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.








.png)













