The potency of ursolic acid as a co-chemotherapy agent for breast cancer: Bibliometric analysis and bioinformatic study

Authors

  • Farras A. RAHMAN Universitas Gadjah Mada, Graduate School, Master Program of Biotechnology, Yogyakarta 55281; Universitas Gadjah Mada, Faculty of Pharmacy, Cancer Chemoprevention Research Center, Yogyakarta 55281 (ID)
  • Rohmad Y. UTOMO Universitas Gadjah Mada, Faculty of Pharmacy, Cancer Chemoprevention Research Center, Yogyakarta 55281; Universitas Gadjah Mada, Faculty of Pharmacy, Medicinal Chemistry Laboratory, Yogyakarta 55281 (ID) https://orcid.org/0000-0003-4803-9417
  • Muthi’ IKAWATI Universitas Gadjah Mada, Faculty of Pharmacy, Cancer Chemoprevention Research Center, Yogyakarta 55281; Universitas Gadjah Mada, Faculty of Pharmacy, Macromolecular Engineering Laboratory, Yogyakarta 55281; Universitas Gadjah Mada, Study Center for Biotechnology, Yogyakarta 55281 (ID) https://orcid.org/0000-0002-5968-0130

DOI:

https://doi.org/10.55779/nsb17112309

Keywords:

bibliometric analysis, cancer, MAPK3, molecular docking, ursolic acid

Abstract

Ursolic acid, a triterpenoid compound found in various plants, has been garnered significant attention as potential co-chemotherapeutic agent for breast cancer therapy. To comprehensively evaluate the current state of research and identify knowledge gaps, we conducted a bibliometric analysis of the literature pertaining ursolic acid and breast cancer. Using several databases, including Scopus, Google Scholar, and PubMed, we analyzed publication trends, collaboration patterns, and research foci within this field from 2000 to 2024. The highest number of publications was from China, which had 37 documents on those three databases. The most cited article was published by Yeh et al. in 2010. The keyword co-occurrence analysis discovered that “cytotoxic effect”, “breast cancer cell line”, and “therapy” were terms that are most frequently used in this field. Our bioinformatic study revealed that ursolic acid has ability to bind into MAPK3 protein with affinity score -7.2 kcal/mol due to van der Waals and alkyl interactions involving several amino acid residues. This negative regulation of MAPK3 can inhibit cell proliferation, metastasis, and glucose metabolism in breast cancer cells. Overall, this bibliometric analysis and bioinformatic study provide valuable insights into the current landscape of ursolic acid research for breast cancer therapy and highlights areas that warrant further investigation.

Metrics

Metrics Loading ...

References

Angel RED, Smith SM, Glickman RD, Perkins SN, Hursting, SD (2010). Antitumor effects of ursolic acid in a mouse model of postmenopausal breast cancer. Nutrition and Cancer 62(8):1074-1086. https://doi.org/10.1080/01635581.2010.492092

Arnesen S, Blanchard Z, Williams MM, Berrett KC, Li Z, Oesterreich S, Richer JK, Gertz J (2021). Estrogen receptor alpha mutations in breast cancer cells cause gene expression changes through constant activity secondary effects. Cancer Research 81(3):539-551. https://doi.org/10.1158/0008-5472.CAN-20-1171

BIOVIA Dassault Systèmes (2024). BIOVIA Discovery Studio. Retrieved 2024 November 22 from: https://discover.3ds.com/discovery-studio-visualizer-download

Cerami E., Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, … Schultz N (2012). The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery 2(401):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

Chakravarti B, Maurya R, Siddiqui JA, Bid HK, Rajendran SM, Yadav PP, Konwar R (2012). In vitro anti-breast cancer activity of ethanolic extract of Wrightia tomentosa: Role of pro-apoptotic effects of oleanolic acid and urosolic acid. Journal of Ethnopharmacology 142:72–79. https://doi.org/10.1016/j.jep.2012.04.015

Chen QH, Luo SW, Zhang YL, Chen ZL (2011). Development of a liquid chromatography-mass spectrometry method for the determination of ursolic acid in rat plasma and tissue: application to the pharmacokinetic and tissue distribution study. Analytical and Bioanalytical Chemistry 399(8):2877-2884. https://doi.org/10.1007/s00216-011-4651-x

Chen J, Wei Y, Yang W, Huang Q, Chen Y (2022). IL-6: The link between inflammation, immunity and breast cancer. Frontiers in Oncology 12(903800). https://doi.org/10.3389/fonc.2022.903800

Chunarkar-Patil P, Kaleem M, Mishra R, Ray S, Ahmad A, Verma D, Bhayye S, Dubey R, Singh HN, Kumar S (2024). Anticancer drug discovery based on natural products: from computational approaches to clinical studies. Biomedicines 12(201). https://doi.org/10.3390/biomedicines12010201

Daina A, Michielin O, Zoete V (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research 47(W1):W357-W364. https://doi.org/10.1093/nar/gkz382

Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology 4(P3). https://doi.org/10.1186/gb-2003-4-5-p3

Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling 61(8):3891-3898. https://doi.org/10.1021/acs.jcim.1c00203

Eck NJV, Waltman L (2010). VOSviewer Manual. Netherlands. Universiteit Leiden pp 1-53

Guo W, Xu B, Wang X, Zheng B, Du J, Liu S (2020a). The analysis of the anti-tumor mechanism of ursolic acid using connectively map approach in breast cancer cells line MCF-7. Cancer Management and Research 12:3469-3476. https://doi.org/10.2147/CMAR.S241957

Guo Y, Pan W, Liu S, Shen Z, Xu Y, Hu L (2020b). ERK/MAPK signalling pathway and tumorigenesis (Review). Experimental and Therapeutic Medicine 19:1997-2007. https://doi.org/10.3892/etm.2020.8454

Hanahan D (2022). Hallmarks of cancer: New dimensions. Cancer Discovery 12:31-46. https://doi.org/10.1158/2159-8290.CD-21-1059

Harzing AW (2007). Publish or Perish, Retrieved 2024 August 15 from: https://harzing.com/resources/publish-or-perish

Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, … Bhat AA (2022). Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomedicine & Pharmacotherapy 150(113054):1-12. https://doi.org/10.1016/j.biopha.2022.113054

He Y, Liu X, Chen Z, Zhu J, Xiong Y, Li K, Dong J, Li X (2007). Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP2 cascade in pancreatic cancer metastasis. Clinical Cancer Research 13(11):3115-3124. https://doi.org/10.1158/1078-0432.CCR-06-2088

Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R (2015). InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16(169):1-7. https://doi.org/10.1186/s12859-015-0611-3

Ikawati M, Utomo RY, Hapsari NP, Meiyanto E, Oka C (2024). Diosmin enhances the anti-migration activity of curcumin analog PGV-1 on colorectal cancer cells. The Indonesian Biomedical Journal 16(1):56-65. https://doi.org/10.18585/inabj.v16i1.2829

Jiang S, Meng Q, Ji F, Yin Y, Liu X, Shi W, Lyu Y (2023). A bibliometric analysis of metastatic breast cancer: two-decade report (2002-2022). Frontiers in Oncology 13(1229222):1-18. https://doi.org/10.3389/fonc.2023.1229222

Jiang H, Li H (2021). Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer 21(149):1-13. https://doi.org/10.1186/s12885-021-07860-2

Kassi E, Sourlingas TG, Spiliotaki M, Papoutsi Z, Pratsinis H, Aligiannis N, Moutsatsou P (2009). Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells. Cancer Investigation 27:723–733. https://doi.org/10.1080/07357900802672712

Kciuk M, Gieleci nska A, Budzinska A, Mojzych M, Kontek R (2022). Metastasis and MAPK pathways. International Journal of Molecular Science 23(3847). https://doi.org/10.3390/ijms23073847

Kim KH, Seo HS, Choi HS, Choi IH, Shin YC, KoSG (2011). Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Archives of Pharmacal Research 34(8):1363-1372. https://doi.org/10.1007/s12272-011-0817-5

Krieger E, Vriend G (2014). YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30:2981-2982. https://doi.org/10.1093/bioinformatics/btu426

Liu X, Wang Y, Wen Q (2024). Bibliometric analysis of the top 100 most cited articles on Th17/Treg balance and rheumatoid arthritis. Heliyon 10( e32832):1-11. https://doi.org/10.1016/j.heliyon.2024.e32832

Lewinska A, Adamczyk‑Grochala J, Kwasniewicz E, Deregowska A, Wnuk M (2017). Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis 22:800-815. https://doi.org/10.1007/s10495-017-1353-7

Luo J, Hu Y,Wang H (2017). Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF‑κB signaling pathways in vitro. Experimental And Therapeutic Medicine 14:3623-3631. https://doi.org/10.3892/etm.2017.4965

Mlala S, Oyedejii AO, Gondwe M, Oyedeji OO (2019). Ursolic acid and its derivatives as bioactive agents. Molecules 24(2751):1-25 https://doi.org/10.3390/molecules24152751

Nangia-Makker P, Taitδ L, Hogan V, Shekharδ MPV, Funasaka T, Raz A (2007). Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum sanctum. International Journal of Cancer 121(4):884-894. https://doi.org/10.1002/ijc.22733

Novitasari D, Meiyanto E, Kato J, Jenie RI (2022). Antimigratory evaluation from curcumin-derived synthetic compounds PGV-1 and CCA-1.1 on HCC1954 and MDA-MB-231 cells. Indonesian Journal of Cancer Chemoprevention 13(2):71-82. http://dx.doi.org/10.14499/indonesianjcanchemoprev13iss2pp71-82

Papa S, Choy PM, Bubici C (2019). The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 38:2223-2240. https://doi.org/10.1038/s41388-018-0582-8

Petrosino M, Novak L, Pasquo A, Turina P, Capriotti E, Minicozzi V, … Chiaraluce R (2023). The complex impact of cancer‑related missense mutations on the stability and on the biophysical and biochemical properties of MAPK1 and MAPK3 somatic variants. Human Genomics 17(95) https://doi.org/10.1186/s40246-023-00544-x

Piet M, Paduch R (2022). Ursolic and oleanolic acids in combination therapy inhibit migration of colon cancer cells through down-regulation of the uPA/uPAR-dependent MMPs pathway. Chemico-Biological Interactions 368(110202):1-11. https://doi.org/10.1016/j.cbi.2022.110202

Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A. La K, ... KwongIndrayanto LN (2018). Oncogenic signaling pathways in the cancer genome atlas. Cell 173:321-337. https://doi.org/10.1016/j.cell.2018.03.035

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11):2498-504. https://doi.org/10.1101/gr.1239303

Skolastika S, Hanif N, Ikawati M, Hermawan A (2022). Comprehensive computational analysis of honokiol targets for cell cycle inhibition and immunotherapy in metastatic breast cancer stem cells. Evidence-Based Complementary and Alternative Medicine 4172531:1-18. https://doi.org/10.1155/2022/4172531

Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, … Lancet D (2016). The GeneCards Suite: From gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics 54:1.30.1 - 1.30.33. https://doi.org/10.1002/cpbi.5

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, … von Mering C (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 6;51(D1):D638-D646. https://doi.org/10.1093/nar/gkac1000

Taherkhani A, Khodadadi P, Samie L, Azadian Z, Bayat Z (2023). Flavonoids as strong inhibitors of MAPK3: A computational drug discovery approach. International Journal of Analytical Chemistry 8899240:1-16. https://doi.org/10.1155/2023/8899240

Trott O, Olson AJ (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31(2):455-461. https://doi.org/10.1002/jcc.21334

Wang J, Ren T, Xi T (2012). Ursolic acid induces apoptosis by suppressing the expression of FoxM1 in MCF-7 human breast cancer cells. Medical Oncology 29:10-15. https://doi.org/10.1007/s12032-010-9777-8

Wang X, Zhang H, Chen X (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance 2(2):141-60. https://doi.org/10.20517/cdr.2019.10

Wang XH, Zhou SY, Qian ZZ, Zhang HL, Qiu LH, Song Z, Zhao J, Wang P, Hao XS, Wang HQ (2013). Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors. Expert Opinion on Drug Metabolism & Toxicology 9(2):117-125. https://doi.org/10.1517/17425255.2013.738667

Yeh C, Wu C, Yen G (2010). Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Molecular Nutrition & Food Research 54:1285-1295. https://doi.org/10.1002/mnfr.200900414

Zafar S, Khan K, Hafeez A, Irfan M, Armaghan M, Rahman AU, ...Bagiu, R.V (2022). Ursolic acid: a natural modulator of signaling networks in different cancers. Cancer Cell International 22(399):1-16. https://doi.org/10.1186/s12935-022-02804-7

Zhao C, Yin S, Dong Y, Guo X, Fan L, Ye, M, Hu H (2013). Autophagy-dependent EIF2AK3 activation compromises ursolic acid-induced apoptosis through upregulation of MCL1 in MCF-7 human breast cancer cells. Autophagy. 9(2):196-207. https://doi.org/10.4161/auto.22805

Downloads

Published

2025-03-26

How to Cite

RAHMAN, F. A., UTOMO, R. Y., & IKAWATI, M. (2025). The potency of ursolic acid as a co-chemotherapy agent for breast cancer: Bibliometric analysis and bioinformatic study. Notulae Scientia Biologicae, 17(1), 12309. https://doi.org/10.55779/nsb17112309

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb17112309