Enrichment of Vigna unguiculata (L.) Walp sprouts with iron and zinc: influence on antioxidant capacity and phytochemicals
DOI:
https://doi.org/10.55779/nsb17112299Keywords:
cowpea, phytic acid, radical scavenging activity, tannins, total phenolsAbstract
Micronutrients are essential for the growth and development of animals, plants, and humans. Crop biofortification has emerged as a viable strategy to address iron (Fe) and zinc (Zn) deficiencies in the soil. Biofortification with Fe and Zn during seed germination is particularly valuable, as it not only meets nutritional requirements but also helps prevent diseases associated with Fe and Zn deficiencies. This study aimed to evaluate the antioxidant capacity and phytochemical content of cowpea sprouts (Vigna unguiculata L.) biofortified with Fe and Zn. Cowpea shoots were cultivated in a growth chamber under dark conditions with controlled temperature and water supply, and four concentrations of iron and zinc (0-, 5-, 10-, and 15-mM L⁻¹) were applied. The results indicated that optimizing the Fe and Zn concentrations was necessary to enhance the antioxidant capacity in the sprouts while avoiding stress from excessive nutrient levels. The low Zn concentration (5 mM) in the absence of Fe proved most effective in increasing antioxidant capacity, reaching 196.18 µg mL⁻¹. Zn application alone or at reduced Fe concentrations promoted a higher phenolic content in the sprouts. Additionally, the combination of 5 mM Fe with 15 mM Zn resulted in the highest condensed tannin content (102.67 mg catechin g⁻¹), whereas the combination of 15 mM Fe with 0 mM Zn produced the lowest phytic acid level at 0.32 mg FA g⁻¹.
Metrics
References
Abebe BK, Alemayehu MT (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research 10:100383. https://doi.org/10.1016/j.jafr.2022.100383
Alotaibi BS, Ijaz M, Buabeid M, Kharaba ZJ, Yaseen HS, Murtaza G (2021). Therapeutic effects and safe uses of plant-derived polyphenolic compounds in cardiovascular diseases: a review. Drug Design, Development and Therapy 15:4713-4732. https://doi.org/10.2147/DDDT.S327238
Aryal S, Baniya M, Danekhu K, Kunwar P, Gurung R, Koirala N (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 8(4):96. https://doi.org/10.3390/plants8040096
Carbas B, Machado N, Pathania S, Brites C, Rosa E, Barros A (2021). Potential of legumes: nutritional value, bioactive properties, innovative food products, and application of eco-friendly tools for their assessment. Food Reviews International 39:160-188. https://doi.org/10.1080/87559129.2021.1901292
Cervantes-Valencia ME, López-Valdez N, Rojas-Lemus M, González-Villalva A, Morales-Ricardes G, Bizarro-Nevares P, … Fortoul TI (2024). Antioxidantes naturales y su efecto contra el estrés oxidante provocado por la contaminación por material particulado [Natural antioxidants and their effect against oxidative stress caused by particulate matter pollution]. Revista de la Facultad de Medicina de la UNAM 67(4):7-20. https://doi.org/10.22201/fm.24484865e.2024.67.4.02
Chang SK, Alasalvar C, Shahidi F (2016). Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. Journal of Functional Foods 21:113-132. http://dx.doi.org/10.1016/j.jff.2015.11.034.
Chon S-U (2013). Total polyphenols and bioactivity of seeds and sprouts in several legumes. Current Pharmaceutical Design 19(34):6112-6124. https://doi.org/10.2174/1381612811319340005
Donaldson RP, Kwak Y, Yanik T, Sharma V (2008). Plant Peroxisomes and glyoxysomes. Encyclopedia of life sciences. Nature Publishing Group. https://doi.org/10.1002/9780470015902.a0001677.pub2
Dueñas M, Sarmento T, Aguilera Y, Benitez V, Mollá E, Esteban RM, Martín-Cabrejas MA (2016). Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT - Food Science and Technology 66:72-78. https://doi.org/10.1016/j.lwt.2015.10.025
Ebert AW (2022). Sprouts and microgreens—Novel food sources for healthy diets. Plants 11(4):571. https://doi.org/10.3390/plants11040571
Elliott H, Woods P, Green BD, Nugent AP (2022). Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes?. Nutrition Bulletin 47(2):138-156. https://doi.org/10.1111/nbu.12549
Fei J, Demillard LJ, Ren J (2022). Reactive oxygen species in cardiovascular diseases: an update. Exploration of Medicine 3(2):188-204. https://doi.org/10.37349/emed.2022.00085
Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Kozlowska H, Vidal-Valverde C (2008). Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. Emmerald, Glycine max cv. Jutro and Glycine max cv. merit. Food Chemistry 111:622-630. https://doi.org/10.1016/j.foodchem.2008.04.028
Fine AM (2000). Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications. Alternative Medicine Review: A Journal of Clinical Therapeutic 5(2):144-151
Galieni A, Falcinelli B, Stagnari F, Datti A, Benincasa P (2020). Sprouts and microgreens: trends, opportunities, and horizons for novel research. Agronomy 10(9):1424. https://doi.org/10.3390/agronomy10091424
Gaytán‐Martínez M, Domínguez‐Hernández E, Morales‐Sánchez E, Mariscal‐Moreno RM (2023). Effect of germination on techno‐functional and nutraceutical properties of cowpea (Vigna unguiculata) flour. International Journal of Food Science and Technology 58(11):6143-6150. https://doi.org/10.1111/ijfs.16725
GonÇalves FV, Medici LO, Fonseca MPSD, Pimentel C, Gaziola SA, Azevedo RA (2020). Protein, phytate and minerals in grains of commercial cowpea genotypes. Anais da Academia Brasileira de Ciências 92(suppl 1):e20180484. https://doi.org/10.1590/0001-3765202020180484
González-Fresnuda Y, Peña-Sánchez M, Sánchez-Álvarez R, Santana JL (2001). Taninos de diferentes especies vegetales en la prevención del fotoenvejecimiento [Tannins from different plant species in the prevention of photoaging]. Revista Cubana de Investigaciones Biomédicas 20:16-20
Hammer Ø, Harper DAT, Ryan PD (2001). PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1-9.
Haug W, Lantzsch HJ (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture 34(12):1423-1426. https://doi.org/10.1002/jsfa.2740341217
Herniter, IA, Muñoz‐Amatriaín M, Close TJ (2020). Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legume Science 2:e57. https://doi.org/10.1002/leg3.57
Huang X, Cai W, Xu B (2014). Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry 143:268-276. http://dx.doi.org/10.1016/j.foodchem.2013.07.080
Huang Y, Fan B, Lei N, Xiong Y, Liu Y, Tong L, ... Blecker C (2022). Selenium biofortification of soybean sprouts: effects of selenium enrichment on proteins, protein structure, and functional properties. Frontiers in Nutrition 9:849928. https://doi.org/10.3389/fnut.2022.849928
Kassama L, Tasie O (2017). The kinetics of dephosphorylated phytic acid release from enzymatic hydrolyzed red kidney beans (Phaseolus vulgaris L). ASABE Annual International Meeting 1701183. https://doi.org/10.13031/aim.201701183
Kujawska M, Ewertowska M, Ignatowicz E, Adamska T, Szaefer H, Zielińska-Dawidziak M, ... Jodynis-Liebert J (2016). Evaluation of safety of iron-fortified soybean sprouts, a potential component of functional food, in rat. Plant Foods for Human Nutrition 71:13-18. https://doi.org/10.1007/s11130-016-0535-8
Kumar V, Sinha AK, Makkar HPS, Becker K (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry 120:945-959. https://doi.org/10.1016/j.foodchem.2009.11.052
Kumar S, Abedin MM, Singh AK, Das S (2020). Role of phenolic compounds in plant-defensive mechanisms. In: Lone R, Shuab R, Kamili A (Eds). Plant Phenolics in Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_22
Kumar A, Singh B, Raigond P, Sahu C, Mishra U, Sharma S, Lal M (2021). Phytic acid: blessing in disguise, a prime compound required for both plant and human nutrition. Food research international 142:110193. https://doi.org/10.1016/j.foodres.2021.110193
Kumari S, Krishnan V, Sachdev A (2015). Impact of soaking and germination durations on antioxidants and anti-nutrients of black and yellow soybean (Glycine max. L) varieties. Journal of Plant Biochemistry and Biotechnology 24:355-358. https://doi.org/10.1007/s13562-014-0282-6
Lee S (2018). Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxidative Medicine and Cellular Longevity 2018:156285. https://doi.org/10.1155/2018/9156285
Makkar HPS, Blümmel M, Borowy NK, Becker K (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal Science of Food and Agriculture 61:161-165. https://doi.org/10.1002/jsfa.2740610205
Matuschek E, Svanberg U (2002). Oxidation of polyphenols and the effect on in vitro iron accessibility in a model food system. Journal of Food Science 67:420-424. https://doi.org/10.1111/j.1365-2621.2002.tb11421.x
Mehdaoui Y, Yeddes W, Selmi S, Saidani-Tounsi M, Abdelly C, Farhat MB (2024). Variations of nutritional and antioxidant contents of Lepidium sativum L. sprouts as affected by zinc biofortification. Scientia Horticulturae 329:112994. https://doi.org/10.1016/j.scienta.2024.112994
Montllor-Albalate C, Colin AE, Chandrasekharan B, Bolaji N, Andersen JL, Wayne Outten F, Reddi AR (2019). Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biology 21:101064. https://doi.org/10.1016/j.redox.2018.11.022
Pająk P, Socha R, Gałkowska D, Rożnowski J, Fortuna T (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry 143:300-306. http://dx.doi.org/10.1016/j.foodchem.2013.07.064
Przybysz A, Wrochna M, Małecka-Przybysz M, Gawrońska H, Gawroński SW (2016). Vegetable sprouts enriched with iron: effects on yield, ROS generation and antioxidative system. Scientia Horticulturae 203:110-117. http://dx.doi.org/10.1016/j.scienta.2016.03.017
Ramírez H, Herrera-Gámez B, Benavides-Mendoza A, Rancaño-Arrioja JH, Álvarez-Mares V, Amado-Ramírez C, Martínez-Osorio A (2010). Prohexadiona de calcio incrementa la capacidad antioxidante, el contenido de licopeno y la actividad enzimática en frutos de tomate [Prohexadione calcium increases antioxidant capacity, lycopene content and enzymatic activity in fruits of tomato floradade]. Revista Chapingo Serie Horticultura 16 (3):155-160. https://dx.doi.org/10.5154/r.rchsh.2010.16.019
Sathe SK, Venkatachalam M (2001). Influence of processing technologies on phytate and its removal. In Food phytates, ed. NR Reddy, SK Sathe: 157-88. Boca Raton, FL: CRC Press, pp 157-88.
Sharma SS, Dietz KJ (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science 14 (1):43-50. https://doi.org/10.1016/j.tplants.2008.10.007
Silva MR, da Silva MAAP (1999). Nutritional aspects of phytates and tannins. Revista de Nutrição 12:5-19
Song F, Gan R, Zhang Y, Xiao Q, Kuang L, Li H (2010). Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. International Journal of Molecular Sciences 11:2362-2372. https://doi.org/10.3390/ijms11062362
Sultana B, Anwar F, Ashraf M (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14(6):2167-2180. https://doi.org/10.3390/molecules14062167
Sun C, Wu T, Zhai L, Li D, Zhang X, Xu X, ...Han Z (2016). Reactive oxygen species function to mediate the Fe deficiency response in an Fe-efficient apple genotype: an early response mechanism for enhancing reactive oxygen production. Frontiers in Plant Science 7:1726. https://doi.org/10.3389/fpls.2016.01726
Świeca M, Gawlik-Dziki U, Kowalczyk D, Złotek U (2012). Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Scientia Horticulturae 140:87-195. https://doi.org/10.1016/j.scienta.2012.04.005
Takeda T, Kondo K, Ueda K, Iida A (2016). Antioxidant responses of selenium-enriched broccoli sprout (Brassica oleracea) to paraquat exposure. Biomedical Research on Trace Elements 27:8-14. https://doi.org/10.11299/brte.27.8
Terrill TH, Rowan AM, Douglas GB, Barry TN (1992). Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. Journal of the Science of Food and Agriculture 58(3):321-329. https://doi.org/10.1002/jsfa.2740580306
Vázquez-Ruiz Z, Toledo E, Vitelli-Storelli F, Goni L, de la O V, Bes-Rastrollo M, Martínez-González MÁ (2022). Effect of dietary phenolic compounds on incidence of cardiovascular disease in the sun project; 10 years of follow-up. Antioxidants 11(4):783. https://doi.org/10.3390/antiox11040783
Wei Y, Shohag MJI, Wang Y, Lu L, Wu C, Yang X (2012). Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination. Journal of Agricultural and Food Chemistry 60(7):1871-1879. https://doi.org/10.1021/jf205025b
Wei Y, Shohag MJI, Ying F, Yang X, Wu C, Wang Y (2013). Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability. Food Chemistry 138:1952-1958. http://dx.doi.org/10.1016/j.foodchem.2012.09.134
Wleklik K, Deckert J, Chmielowska-Bąk JJ A. P. P. (2023). Study of germination and antioxidant activity of iron-fortified soybean (Glycine max) germs. Acta Physiologiae Plantarum 45:22. https://doi.org/10.1007/s11738-022-03502-7
Wojdyło A, Nowicka P, Tkacz K, Turkiewicz IP (2020). Sprouts vs. microgreens as novel functional foods: variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules 25(20):4648. https://doi.org/10.3390/molecules25204648
Zago M, Oteiza P (2001). The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radical Biology and Medicine 31(2):266-374. https://doi.org/10.1016/S0891-5849(01)00583-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Amelio E. MORALES-MORALES, Julia MEDRANO-MACÍAS, Efraín DE-LA-CRUZ-LÁZARO, Rodolfo OSORIO-OSORIO, José R. VELÁZQUEZ-MARTÍNEZ, César MÁRQUEZ-QUIROZ

This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.