Evaluation of growth position and root associative microbes of Mitragyna speciosa on the production of psychoactive, mitragynine and alkaloids

Authors

  • Cico Jhon Karunia SIMAMORA Universitas Tanjungpura, Faculty of Agricultural, Department of Agricultural, West Kalimantan (ID)
  • Kiki Prio UTOMO Universistas Tanjungpura, Faculty of Engineering, Department of Environmental Engineering, West Kalimantan (ID)
  • JUMIATI Universistas Tanjungpura, Faculty of Engineering, Department of Environmental Engineering, West Kalimantan (ID)
  • Muhammad PRAMULYA Universistas Tanjungpura, Faculty of Agricultural, Department of Plantation Diploma, West Kalimantan (ID)
  • Nelly WAHYUNI Universistas Tanjungpura, Faculty of Mathematics and Natural Sciences, Department of Chemical, West Kalimantan (ID)

DOI:

https://doi.org/10.55779/nsb17112281

Keywords:

bioactive, enzyme, psychotropic, microbe, metabolite

Abstract

Cultivation of kratom on riparian (Kapuas), is believed to increase leaf phytochemicals. The location of the best land and basis for the identification of red and green kratom is unknown. The purpose of this study was to identify species and the effect of land distance on the phytochemical of kratom leaves which were thought to be influenced by the composition of nutrients, growth inhibitor, and associative microorganisms. Materials to be used in this study include soil and leaf samples from red and green leaf bone kratom. Based on this research, it is known that kratom, which has been considered a variant, is genetically different and not a single species. Green kratom has the highest phytochemical content compared to red kratom, with the best planting is at a land distance of 244 m. Materials to be used in this study include soil and leaf samples from red and green leaf bone kratom. The highest phenol content was found in green kratom at 160 m (0.66 mgGAE g-1). The highest flavonoid was found in red kratom at 244 m (13.96 mg QE-1g-1). The highest alkaloid content was found in 244 m green kratom (21.30% g-1). Red kratom at 160 m distance had the highest antioxidant activity (70.69%). The results of associative microorganism observations showed the highest biofertilizer was red kratom at 244 m from the river, including phosphate solubilizing (2.19×105 CFU g-1), potassium solubilizing (1.6×105 CFU g-1), nitrogen fixation (1.1×105 CFU g-1), and phenol degradable (6.5×104 CFU g-1). Based on this research, it is known that kratom, which has been considered a variant, is genetically different and not a single species. Green kratom has the highest phytochemical content compared to red kratom, with the best planting is at a land distance of 244 m.

Metrics

Metrics Loading ...

References

Ahmad K, Aziz Z (2012). Mitragyna speciosa use in the northern states of malaysia: a cross-sectional study. Journal of Ethnopharmacology 141(1):446-450. https://doi.org/10.1016/j.jep.2012.03.009

Alfian R, Susanti H (2012). Penetapan kadar fenolik ekstrak metanol kelopak bunga rosella merah (Hibiscus sabdariffa linn.) dengan variasi tempat tumbuh secara spektrofotometri. Jurnal Ilmiah Kefarmasian 2(1):73-80. https://doi.org/10.12928/pharmaciana.v2i1.655

Berkov S, Martinez-Francé s V, Bastida J, Codina C, Rios S (2014). Evolution of alkaloid biosynthesis in the genus Narcissus. Phytochemistry 99:95-106. https://doi.org/10.1016/j.phytochem.2013.11.002

Chang C-C, Yang M-H, Wen H-M, Chern J-C (2002). Estimation of total flavonoid content in propolis by two complementary colometry methods. Journal of Food and Drug Analysis 10(3):178-182. https://doi.org/10.38212/2224-6614.2748

Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Jackson BG, Baldy V (2016). Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. Journal of Ecology 104:1527-1541. https://doi.org/10.1111/1365-2745.12644

Chon SU, Nelson CJ (2010). Allelopathy in compositae plants. Sustainable Agriculture 30:349-358. https://doi.org/10.1007/978-94-007-0394-0_32

De Albuquerque MB, Dos Santos RC, Lima LM, Melo Filho PA, Nogueira RJMC, Da Camara CAG, Ramos AR (2011). Allelopathy, an alternative tool to improve cropping systems. A review. Agronomy Sustainable Development 31:379-395. https://doi.org/10.1051/agro/2010031

Dotaniya ML, Meena VD (2015). Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proceeding of the National Academic of Sciences. India: Springer pp 1-12. https://doi.org/10.1007/s40011-013-0297-0

Eding H, Meuwissen THE (2001). Marker-based estimates of between and within population kinships for the conservation of genetic diversity. Journal of Animal Breeding and Genetics 118(3):141-159. https://doi.org/10.1046/j.1439-0388.2001.00290.x

Fageria NK, Stone LF (2006). Physical, chemical, and biological changes in the rhizosphere and nutrient availability. Journal of Plant Nutrition 29 (7):1327-1356. https://doi.org/10.1080/01904160600767682

Farhan H, Rammal H, Hijazi A, Hamad H, Daher A, Redaon M, Badran B (2012). In vitro antioxidant activity of ethanolic and aqueous extracts from crude Malva parviflora L. grown in Lebanon. Asian Journal of Pharmaceutical and Clinical Research 5(3):234-238.

Fitria AN, Zulaika E (2018). Aklimatisasi pH dan pola pertumbuhan Bacillus cereus S1 pada medium msm modifikasi. Jurnal Sains dan Seni ITS 7 (2):39-41. https://doi.org/10.12962/j23373520.v7i2.36788

Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology 6(3):269- 279. https://doi.org/10.1055/s-2004-820867

Honorio ABM, Chcaon ID, Vazquez MM, Ribeiro da Silva M, Campos FG et al. (2021). Impact of drought and flooding on alkaloid production in Annona crassiflora Mart. Horticulturae 7(10):414. https://doi.org/10.3390/horticulturae7100414

Hue NV, Silva JA (2000). Organic soil amendments for sustainable agriculture: organic sources of nitrogen, phosphorus, and potassium. Plant Nutrient Management in Hawaii’s Soils, Approaches for tropical and subtropical agriculture, University of Hawaii at Manoa, pp 133-144.

Hutama AS, Huang H, Kurniawan YS (2019). Investigation of the chemical and optical properties of halogen-substituted N-methyl-4-piperidone curcumin analogs by density functional theory calculations, spectrochim. Acta - Part A Mol. Biomol. Spectrosc 221:2-46. https://doi.org/10.1016/j.saa.2019.117152

Ibrahim MH, Jaafar HZE, Rahmat A, Rahman ZA (2011). Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip fatimah (Labisia pumila Blume). International Journal of Molecular Sciences 12(8):5238-5254. https://doi.org/10.3390/ijms12085238

Iwasa Y (2000). Dynamic optimization of plant growth. Evolutionary Ecology Research 2:437-455. https://www.cabidigitallibrary.org/doi/full/10.5555/20000711553

Kafle A, Cope KR, Raths R, Yakha JK, Subramanian S, Bϋcking H, Gracia K (2019). Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy 9:127. https://doi.org/10.3390/agronomy9030127

Khaled H, Fawy HA (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research 6 (1):21-29. https://doi.org/10.17221/4/2010-SWR

Kharismawati M, Utami PI, Wahyuningrum R (2009). Penetapan kadar tanin dalam infusa daun salam (Syzygium polyanthum (wight.) Walp)) secara spektrofotometri sinar tampak. Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia) 6(1):22-27. https://doi.org/10.30595/pharmacy.v6i01.398

Krastanov A, Alexieva Z, Yemendzhiev H (2013). Microbial degradation of phenol and phenolic derivatives. Engineering in Life Sciences 13:76-87. https://doi.org/10.1002/elsc.201100227

Macik M, Griya A, Frag M (2020). Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy 62:31-87. https://doi.org/10.1016/bs.agron.2020.02.001

Miransari M, Smith DL (2007). Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. Journal of Plant Nutrition 30(12):1967-1992. https://doi.org/10.1080/01904160701700384

Miransari M (2011). Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology Biotechnology 89(4):917-930. https://doi.org/10.1007/s00253-010-3004-6

Miransari M (2013). Soil microbes and the availability of soil nutrient. Acta Physiologiae Plantarum 35(11):3075-3084. https://doi.org/10.1007/s11738-013-1338-2

Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray H (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8:105-123. https://doi.org/10.1046/j.1354-1013.2001.00459.x

Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, … Naushin F (2019). Role and regulation of plants phenolics in abiotic stress tolerance. Plant Signaling Molecules 157-168. https://doi.org/10.1016/B978-0-12-816451-8.00009-5

Ngernsaengsaruay C, Leksungnoen N, Boonthasak W, Utharatsamee S, Racharak P, Leetanasakskul K, Pongamorn P, Saengbuapuean A (2022). Additional knowledge on the genus Mitragyna (Rubiaceae) in Thailand. Thai Forest Bulletin (Botany) 50(1):20-39. https://doi.org/10.2053/1/tfb.2022.50.1.03

Nugraha WI, Robiyanto R, Luliana S (2018). Antinociceptive activity of aqueous fraction of kratom leaves (Mitragyna speciosa korth.) on male Swiss albino mice. Majalah Obat Tradisional 23(2):91. https://doi.org/10.22146/mot.32085

Pranoto E, Setiawati MR (2014). Pengujian kapasitas penambatan nitrogen Azotobacter sp indigen dan eksogen secara in vitro pada tanah andisol areal pertanaman teh. Jurnal Penelitian Teh dan Kina 17(1):31-38.

Putri SSI, Budiasa IKM, Roni NGK (2019). Populasi bakteri pelarut fosfat dan karakteristik berbagai jenis media tanam dan pupuk organik. Journal of Tropical Animal Science 7(3):1082-1095. https://erepo.unud.ac.id/id/eprint/34654

Prajapati KB, Modi HA (2012). Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBtech Journal of Microbiology 1(2):8-14. http://www.cibtech.org/cjm.htm

Rahayu F, Jose C, Haryani Y (2015). Total fenolik, flavonoid, dan aktivitas antioksidan dari produk teh hijau dan teh hitam tanaman bangun-bangun (Coleus amboinicus) dengan perlakuan ett rumput paitan. Jurnal Online Mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau 2(1):170-177. https://jom.unri.ac.id/index.php/JOMFMIPA/article/view/4413

Saifudin A, Rahau V, Teruna, Hilwan Y (2011). Standarisasi Bahan Obat Alam Edisi Pertama. Yogyakarta: Graha Ilmu.

Sinsabaugh RL (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42(3):391-404. https://doi.org/10.1016/j.soilbio.2009.10.014

Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. 3rd Edition. London: Academic Press.

Stoeckle MY, Gamble CC, Kirpekar R, Young G, Ahmed S, Little DP (2011). Commercial teas highlight plant DNA barcode identification successes and obstacles. Scientific Reports 1(1):42. https://doi.org/10.1038/srep00042

Veltri C, Grundmann O (2019). Current perspectives on the impact of kratom use. Substance Abuse and Rehabilitation 10:23-31. https://doi.org/10.2147/SAR.S164261

Xu Y, Jimenez MA, Parent S-É, Leblanc M, Ziadi N, Parent LE (2017). Compaction of coarse-textured soils: balance models across mineral and organic compositions. Frontiers in Ecology and Evolution 5:83. https://doi.org/10.3389/fevo.2017.00083

Xu Z, Chang L (2017). Rubiaceae. In: identification and control of common weeds: volume 3. Springer Singapore. https://doi.org/10.1007/978-981-10-5403-7_16

Yanai RD, Currie WS, Goodale CL (2003). Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6(3):197-212. https://doi.org/10.1007/S1.0021-002-0206-5

Downloads

Published

2025-03-25

How to Cite

SIMAMORA, C. J. K., UTOMO, K. P., JUMIATI, PRAMULYA, M., & WAHYUNI, N. (2025). Evaluation of growth position and root associative microbes of Mitragyna speciosa on the production of psychoactive, mitragynine and alkaloids. Notulae Scientia Biologicae, 17(1), 12281. https://doi.org/10.55779/nsb17112281

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb17112281