Callogenesis and somatic embryogenesis of Moroccan saffron (Crocus sativus L.), effect of disinfection and hormonal treatments

Authors

  • Soukaina ABOU-WAKIL Moulay Ismail University, Faculty of Sciences, Laboratory of Biotechnology and Valorisation of Bio-Resources, Meknes, P.O. Box 11201 (MA)
  • Fatima HOUSTI Moulay Ismail University, Faculty of Sciences, Laboratory of Biotechnology and Valorisation of Bio-Resources, Meknes, P.O. Box 11201 (MA)
  • Mohamed ROCHD Moulay Ismail University, Faculty of Sciences, Laboratory of Biotechnology and Valorisation of Bio-Resources, Meknes, P.O. Box 11201 (MA)

DOI:

https://doi.org/10.55779/nsb17112278

Keywords:

callus coloration, Crocus sativus L., disinfection agents, in vitro culture, plant growth regulators

Abstract

The saffron (Crocus sativus L.) propagation is limited by the low multiplication rate of corms in the fields besides the problem of their infestation by pathogens. Somatic embryogenesis is one of the techniques that offers great potential for production of healthy corms and large-scale propagation of saffron. In this investigation, saffron corms from Meknes region (in north-west of Morocco) were used as source of explants. The effect of various disinfection protocols containing mercuric chloride or potassium permanganate and hormonal combinations on explants contamination rate, callogenesis, coloration, browning and capacity to produce somatic embryos during culture were evaluated. The results showed that the highest concentrations of mercuric chloride (0.6 and 1%) allowed respectively effective disinfection (6% and 0% contamination); however, they inhibited the development of the explants. The potassium permanganate at 0.1% reduced contamination to 14% but also reduced the percentage of callus induction and their embryogenic potential. The highest rate of callus induction (96%) and embryo formation (81%) were obtained with Murashige and Skoog medium supplemented with 1.0 mg L-1 2,4-dichlorophenoxyacetic acid and 1.0 mg L-1 kinetin. The different colorations of saffron callus observed which evolved during the advancement of cultures ages were influenced by growth regulators and disinfection methods. In fact, disinfection protocols or hormonal combinations that promoted callus induction and embryo formation presented lower browning and higher percentage of whitish orange callus.

Metrics

Metrics Loading ...

References

Abdullaev FI (2002). Cancer chemo preventive and tumoricidal properties of saffron (Crocus sativus L.). Experimental Biology and Medicine 227(1):20-25. https://doi.org/10.1177/153537020222700104

Aboudrare A, Aw-hassan A, Lybbert T (2014). Importance socio-économique du safran pour les ménages des zones de montagne de la région de Taliouine-Taznakht au Maroc. [Socio-economic importance of saffron for households in the mountain areas of the Taliouine-Taznakht region in Morocco]. Revue Marocaine des Sciences Agronomiques et Vétérinaires 2(1):5-14. https://doaj.org/article/54c25f408f774231abc02618abdaf003

Ahmadpoor F, Zare N, Asghari R, Sheikhzadeh P (2022). Sterilization protocols and the effect of plant growth regulators on callus induction and secondary metabolites production in in vitro cultures Melia azedarach L. AMB Express 12(1). https://doi.org/10.1186/s13568-022-01343-8

Amente G, Chimdessa E (2021). Control of browning in plant tissue culture: a review. Journal of Scientific Agriculture 5:67-71. https://doi.org/10.25081/jsa.2021.v5.7266

Amini S, Hemmati K, Ziaratnia SM (2024). Image analysis for detection of crocin content and growth index of saffron corm derived cells under different physiological and chemical conditions. Journal of Research and Innovation in Food Science and Technology 13(2):65-78. https://doi.org/10.22101/JRIFST.2023.375070.1414

Arbaoui S, Bettaieb T (2018). In vitro control of oxidative browning: case of amaryllis (Amaryllis belladonna L.). Journal of new sciences, Agriculture and Biotechnology 60 (4):3850-3856.

Azadi P, Bagheri K, Gholami M, Mirmasoumi M, Moradi A, Sharafi A (2017). Thin cell layer, a suitable explant for in vitro regeneration of saffron (Crocus sativus L.). Journal of Agricultural Science and Technology 19(6): 1429-1435. http://journals.modares.ac.ir/article-23-10812-en.html

Bentata F, Lage M, Bakhy K, Ibrahimi M, Jbair A, El Aissami A, … Labhilili M (2017). Sanitary assessment of saffron corms and soil from great moroccan production areas: Taliouine and Taznakht. Acta Horticulturae 1184(37):263-266. https://doi.org/10.17660/ActaHortic.2017.1184.37

Bhatia S, Bera T (2015). Somatic embryogenesis and organogenesis. In: Elsevier eBooks. Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press, pp 209-230. https://doi.org/10.1016/B978-0-12-802221-4.00006-6

Blazquez S, Olmos E, Hernández JA, Fernández-García N, Fernández JA, Piqueras A (2009). Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymatic system. Plant Cell, Tissue and Organ Culture 97(1):49-57. https://doi.org/10.1007/s11240-009-9497-y

Blázquez S, Piqueras A, Sema MD, Casas JL, Fernández JA (2004). Somatic embryogenesis in saffron: optimisation through temporary immersion and polyamine metabolism. Acta Horticulturae 650:269-276. https://doi.org/10.17660/ActaHortic.2004.650.30

Cardone L, Castronuovo D, Perniola M, Cicco N, Candido V (2020). Saffron (Crocus sativus L.), the king of spices: an overview. Scientia Horticulturae 272(2):1-13. https://doi.org/10.1016/j.scienta.2020.109560

Cavusoglu A, Sulusoglu M, Erkal S (2013). Plant regeneration and corm formation of saffron (Crocus sativus L.) in vitro. Research Journal of Biotechnology 8(12):128-133.

Chaloushi B, Zarghami R, Abd-Mishani C, Omidi M, Agayev YM, Sardood BP (2007). Effects of different hormonal treatments on the callus production and plantlet regeneration in saffron (Crocus sativus L.). Pakistan Journal of Biological Sciences 10(10):1625-1631. https://doi.org/10.3923/pjbs.2007.1625.1631

Chib S, Thangaraj A, Kaul S, Dhar MK, Kaul T (2020). Development of a system for efficient callus production, somatic embryogenesis and gene editing using CRISPR/Cas9 in saffron (Crocus sativus L.). Plant Methods 16(1):1-10. https://doi.org/10.1186/s13007-020-00589-2

Darvishi E, Zarghami R, Mishani CA, Omidi M (2007). Effects of different hormone treatments on nonembryogenic and embryogenic callus induction and time-term enzyme treatments on number and viability of isolated protoplasts in saffron (Crocus sativus L.). Acta Horticulturae 739:279-284. https://doi.org/10.17660/ActaHortic.2007.739.35

Devi K, Sharma M, Ahuja PS (2014). Direct somatic embryogenesis with high frequency plantlet regeneration and successive cormlet production in saffron (Crocus sativus L.). South African Journal of Botany 93:207-216. https://doi.org/10.1016/j.sajb.2014.04.006

Dong YS, Fu CH, Su P, Xu XP, Yuan J, Wang S, … Yu LI (2016). Mechanisms and effective control of physiological browning phenomena in plant cell cultures. Physiologia Plantarum 156(1):13-28. https://doi.org/10.1111/ppl.12382

Ebrahimzadeh H, Karamian R, Noori-Daloii MR (2000). Somatic embryogenesis and plantlet regeneration in saffron, Crocus sativus L. Journal of Sciences, Islamic Republic of Iran 11(3):169-173. https://journals.ut.ac.ir/article_31834_db295450bd82ea7d4f5cde8a22045260.pdf

George PS, Visvanath S, Ravishankar GA, Venkataraman LV (1992). Tissue culture of saffron (Crocus sativus L.): somatic embryogenesis and shoot regeneration. Food Biotechnology 6(3):217-223. https://doi.org/10.1080/08905439209549835

Ghiorghiță G (2019). A journey into of the universe of in vitro cultures of plants. Callogenesis. Environment and Natural Resources Research 9(4):45-60. https://doi.org/10.5539/enrr.v9n4p45

Housti F, Coupé M, D’Auzac J (1992). Effect of ethylene on enzymatic activities involved in the browning of Hevea brasiliensis callus. Physiologia Plantarum 86(3):445-450. https://doi.org/10.1111/j.1399-3054.1992.tb01342.x

Karamian R (2004). Plantlet regeneration via somatic embryogenesis in four species of Crocus. Acta Horticulturae 650:253-259. https://doi.org/10.17660/ActaHortic.2004.650.28

Karaoǧlu C, Çöcü S, Ipek A, Parmaksiz I, Sarihan E, Uranbey S, ... Khawar KM (2007). In vitro micropropagation of saffron. Acta Horticulturae 739(5):223-227. https://doi.org/10.17660/ActaHortic.2007.739.28

Lagram K, Ben El Caid M, Atyane LH, Salaka R, El Boullani A, El Mousadik A, Serghini MA (2017). In vitro shoots and micro-corms formation through indirect organogenesis of Moroccan saffron (Crocus sativus L). Acta Horticulturae 1184:97-108. https://doi.org/10.17660/ActaHortic.2017.1184.14

Lagram K, Ben El Caid M, El Aaouam S, Lachheb M, El Mousadik A, Serghini MA (2016). In vitro shoot regeneration and development of microcorms of Moroccan saffron (Crocus sativus L). Atlas Journal of Plant Biology 2016:50-55. https://doi.org/10.5147/ajpb.v0i0.113

Mazri MA (2015). Role of cytokinins and physical state of the culture medium to improve in vitro shoot multiplication, rooting and acclimatization of date palm (Phoenix dactylifera L.) cv. Boufeggous. Journal of Plant Biochemistry and Biotechnology 24(3):268-275. https://doi.org/10.1007/s13562-014-0267-5

Mereu A, Dorsaf K, Scarpa G (2019). In vitro culture of saffron: hormones influence on the development of new shoots and callus. Plant Cell Biotechnology and Molecular Biology 20: 511-520.

Meziani R, Jaiti F, Mazri MA, Hassani A, Ben Salem S, Anjarne M, … Alem C (2016). Organogenesis of Phoenix dactylifera L. cv. ‘Mejhoul’: Influences of natural and synthetic compounds on tissue browning, and analysis of protein concentrations and peroxidase activity in explants. Scientia Horticulturae 204:145-152. https://doi.org/10.1016/j.scienta.2016.04.009

Moghbeli A, Safarnejad A, Moghbeli F (2015). The effect of 2,4-D on callus induction and NAA on embryogenesis in saffron (Crocus sativus L.). In: Third Agriculture and Sustainable Natural Resources Congress. 17 June 2015, Tehran (in Persian).

Moradi A, Zarinkamar F, Caretto S, Azadi P (2018). Influence of thidiazuron on callus induction and crocin production in corm and style explants of Crocus sativus L. Acta Physiologiae Plantarum 40(185):1-8. https://doi.org/10.1007/s11738-018-2760-2

Moradi A, Zarinkamar F, Domenico SDe, Mita G, Sansebastiano GPDi, Caretto S (2020). Salycilic acid induces exudation of crocine and phenolics in saffron suspension-cultured cells. Plants 9(949):1-18. https://doi.org/10.3390/plants9080949

Moshtaghi N (2020). Tissue and cell culture of saffron. In: Elsevier eBooks. Saffron: Science, Technology and Health. pp 229-246. https://doi.org/10.1016/B978-0-12-818638-1.00014-9

Murashige T, Skoog FA (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15(3):473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Permadi N, Akbari SI, Prismantoro D, Indriyani NN, Nurzaman M, Alhasnawi AN, … Julaeha E (2024). Traditional and next-generation methods for browning control in plant tissue culture: current insights and future directions. Current Plant Biology 38(3):100339. https://doi.org/10.1016/j.cpb.2024.100339

Permadi N, Nurzaman M, Alhasnawi AN, Doni F, Julaeha E (2023). Managing lethal browning and microbial contamination in Musa spp. tissue culture: synthesis and perspectives. Horticulturae 9(453). https://doi.org/10.3390/horticulturae9040453

Raja W, Zaffer G, Wani SA (2007). In vitro microcorm formation in saffron (Crocus sativus L.). Acta Horticulturae, 739(2):291-296. https://doi.org/10.17660/ActaHortic.2007.739.37

Rajabpoor SH, Azghandi AV, Saboora A (2007). Effects of different concentrations of 2,4-D and BAP on somatic embryogenesis induction in saffron (Crocus sativus L.). Pakistan Journal of Biological Sciences 10(21):3927-3930. https://doi.org/10.3923/pjbs.2007.3927.3930

Sarabandi M, Singh RK, Kalantari S, Shokrpour M, Naresh R, Rafiee S (2024). Unveiling machine learning's impact on in vitro callogenesis optimization in Crocus sativus L. South African Journal of Botany 168:1-8 https://doi.org/10.1016/j.sajb.2024.02.053

Sharma DK, Piqueras A (2010). Saffron (Crocus sativus L.) tissue culture: micropropagation and secondary metabolite production. In: Husaini AM (Ed). Saffron. Functional Plant Science and Biotechnology 4 (Special Issue 2), Global Science Books, pp 15-24.

Sheibani M, Nemati SH, Davarinejad GH, Azghandi AV, Habashi AA (2007). Induction of somatic embryogenesis in saffron using thidiazuron. Acta Horticulturae 739:259-267. https://doi.org/10.17660/ActaHortic.2007.739.32

Subramanya SH, Pai V, Bairy I, Nayak N, Gokhale S, Sathian B (2018). Potassium permanganate cleansing is an effective sanitary method for the reduction of bacterial bioload on raw Coriandrum sativum. BMC Research Notes 11(1):1-5. https://doi.org/10.1186/s13104-018-3233-9

Taheri-Dehkordi A, Naderi R, Martinelli F, Salami SA (2020). A robust workflow for indirect somatic embryogenesis and cormlet production in saffron (Crocus sativus L.) and its wild allies; C. caspius and C. speciosus. Heliyon 6(12):e05841. https://doi.org/10.1016/j.heliyon.2020.e05841

Tahiri A, Mazri MA, Karra Y, Aabd NA, Bouharroud R, Mimouni A (2023). Propagation of saffron (Crocus sativus L.) through tissue culture: a review. The Journal of Horticultural Science and Biotechnology 98(1):10-30. https://doi.org/10.1080/14620316.2022.2078233

Teixeira da Silva JA, Kulus D, Zhang X, Zeng S, Ma G, Piqueras A (2016a). Disinfection of explants for saffron (Crocus sativus) tissue culture. Environmental and Experimental Biology 14(4):183-198. https://doi.org/10.22364/eeb.14.25

Teixeira da Silva JA, Winarto B, Dobránszki J, Cardoso JC, Zeng S (2016b). Tissue disinfection for preparation of Dendrobium in vitro culture. Folia Horticulturae 28(1):57-75. https://doi.org/10.1515/fhort-2016-0008

Vahedi M, Kalantari S, Salami SAL (2015). Effects of osmolytic agents on somatic embryogenesis of saffron (Crocus sativus L.). Notulae Scientia Biologicae 7(1):57-61. https://doi.org/10.15835/nsb.7.1.9442

Verma SK, Das AK, Cingoz GS, Uslu E, Gurel E (2016). Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected turkish Crocus species. Biotechnology Reports 10:66-74. https://doi.org/10.1016/j.btre.2016.03.006

Visvanath S, Ravishankar GA, Venkataraman LV (1990). Induction of crocin, crocetin, picrocrocin, and safranal synthesis in callus cultures of saffron: Crocus sativus L. Biotechnology and Applied Biochemistry 12(3):336-340. https://agris.fao.org/agris-search/search.do?recordID=US9145242

Yasmin S, Nehvi FA, Wani SA (2013). Tissue culture as an alternative for commercial corm production in saffron: a heritage crop of Kashmir. African Journal of Biotechnology 12(25):3940-3946. https://doi.org/10.5897/AJB2013.12378

Ziaratnia SM, Amini S (2021). The effect of developmental stages of corm, type of medium and plant growth regulators in callus induction of Crocus sativus L. Journal of Horticulture and Postharvest Research 4:43-56. https://doi.org/10.22077/jhpr.2021.3684.1166

Downloads

Published

2025-03-10

How to Cite

ABOU-WAKIL, S., HOUSTI, F., & ROCHD , M. (2025). Callogenesis and somatic embryogenesis of Moroccan saffron (Crocus sativus L.), effect of disinfection and hormonal treatments. Notulae Scientia Biologicae, 17(1), 12278. https://doi.org/10.55779/nsb17112278

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb17112278