Phytochemistry, bioactive potential and chemical characterization of culturable freshwater microalgae Chlorococcum infusionum (Schrank) Meneghini
DOI:
https://doi.org/10.55779/nsb17112276Keywords:
biological resources, Chlorococcum infusionum, cytotoxicity, large-scale productivity, phytochemistry, sustainabilityAbstract
Global attention on microalgae has attained an excellent level for its high values of nutrients and numerous bioactive molecules. Chlorococcum is a cultivable alga with enormous biological and commercial applications. The present study aims to profile the species Chlorococcum infusionum for its phytochemical and biological potentialities. The species was cultured at 25±2 °C with a light intensity of 2500 lux (maximum) and a 7.3-7.5 pH level using Bold’s Basal Medium and obtained 0.9-1.2 g/L dry biomass. The proximate experiment is witnessed with high values of carbohydrate (67.7±0.00%), protein (26.9±0.12%), moisture (8.41±1.37%), and fiber (12.00±1.45%). The FTIR fingerprinting analysis determined the existence of macromolecular pools. It included the various functional groups originating from polysaccharides, amino acids, proteins, lipids, carbohydrates, nucleic acids, nitriles, alcohols, and amines. The GCMS analysis of this species encompasses 19 compounds, of which 13 are well known for their bio-potentialities. Significant antimicrobial activities are noticed against E. coli (14±0.57 mm) and P. syringae (14±0.57 mm) at 75 µg/mL concentration. Also, it exhibited notable antioxidant ability (IC50 = 28.17 ± 1.45 µg/mL) and cytotoxicity (IC50 = 36.12±1.55 µg/mL). The fallout of this present attempt states that C. infusionum could be a promising alternative resource for other microalgae to increase large-scale productivity in response to providing sustainable life from nature.
Metrics
References
Ahmadi A, Moghadamtousi SZ, Abubakar S, Zandi K (2015). Antiviral potential of algae polysaccharides isolated from marine sources: A review. BioMed Research International 1-10. https://doi.org/10.1155/2015/825203
Al-Badri SHA, Al-Ebady AR (2019). Testing The activities of Some of the inside and outside cellular compounds produced by the algae Chlorococcum infusionum and Scenedesmus obliquus against some bacteria. Journal of Education for Pure Science 9:133-139.
Andersen RA (1992). Diversity of eukaryotic algae. Biodiversity and Conservation 1:267-292. https://doi.org/10.1007/BF00693765
Anderson A, Campo A, Fulton E, Corwin A, Jerome WG, O'Connor MS (2020). 7-Ketocholesterol in disease and aging. Redox Biology 29:101380. https://10.1016/j.redox.2019.101380
Antonopoulou S, Karantonis HC, Nomikos T, Oikonomou A, Fragopoulou E, Pantazidou A (2005). Bioactive polar lipids from Chroococcidiopsis sp. (Cyanobacteria). Comparative Biochemistry and Physiology Part B 142:269-282. https://doi.org/10.1016/j.cbpc.2005.07.007
Aquino HL, Concepcion, RS, Mayol AP, Bandala AA, Culaba A, Cuello J, Dadios, EP, Ubando AT, San Juan JLG (2021). Prediction of moisture content of chlorella vulgaris microalgae using hybrid evolutionary computing and neural network variants for biofuel production. In: Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM 2021), Philippines pp 1-6.
Arora K, Kumar P, Bose D, Li X, Kulshrestha S (2021). Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 11:296. https://doi.org/10.1007/s13205-021-02825-5
Avoseh ON, Mtunzi FM, Ogunwande IA, Ascrizzi R, Guido F (2021). Albizia lebbeck and Albizia zygia volatile oils exhibit anti-nociceptive and anti-inflammatory properties in pain models. Journal of Ethnopharmacology 268:113676. https://doi.org/10.1016/j.jep.2020.113676
Azizan A, Bustamam MSA, Maulidiani M, Shaari K, Ismail IS, Nagao N, Abas F (2018). Metabolite profiling of the microalgal diatom Chaetoceros calcitrans and correlation with antioxidant and nitric oxide inhibitory activities via 1H NMR-based metabolomics. Marine Drugs 16:154. https://doi.org/10.3390/md16050154
Barkia I, Saari N, Manning SR (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs 17:304-334. https://doi.org/10.3390/md17050304
Barsanti L, Gualtieri P (2018). Is exploitation of microalgae economically and energetically sustainable?. Algal Research 31:107-115. https://doi.org/10.1016/J.ALGAL.2018.02.001
Botanical Survey of India (2024). Algae. Retrieved 2024 December 11 from: https://bsi.gov.in/page/en/algae
Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, … Pinto E (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 146:60-78. https://doi.org/10.1016/j.cbpc.2006.05.007
Carvalho AMS, Heimfarth L, Pereira EWM, Oliveira FS, Menezes IRA, Coutinho HDM, … Quintans-Júnior LJ (2020). Phytol, a chlorophyll component, produces antihyperalgesic, anti-inflammatory, and antiarthritic effects: Possible NFκB pathway involvement and reduced levels of the proinflammatory cytokines TNF-α and IL-6. Journal of Natural Products 83:1107-1117. https://doi.org/10.1021/acs.jnatprod.9b01116
Cha KH, Koo SY, Lee DU (2008). Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. Journal of Agricultural and Food Chemistry 56:10521-10526. https://10.1021/jf802111x
Christou C, Agapiou A, Kokkinofta R (2017). Use of FTIR spectroscopy and chemometrics for the classification of carobs origin. Journal of Advanced Research 10:1-8. https://doi.org/10.1016/j.jare.2017.12.001
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR (2021). Microalgae as sustainable bio-factories of healthy lipids: evaluating fatty acid content and antioxidant activity. Marine Drugs 19:357. https://doi.org/10.3390/md19070357
Correia N, Pereira H, Silva JT, Santos T, Soares M, Sousa CB, … Silva J (2020). Isolation, identification and biotechnological applications of a novel, robust, free-living Chlorococcum (oophila) amblystomatis strain isolated from a local pond. Applied Sciences 10: 3040. https://doi.org/10.3390/app10093040
De Jesus Raposo MF, De Morais, AMB, De Morais RMS C (2015). Marine 419 polysaccharides from algae with potential biomedical applications. Marine Drugs 13:2967-3028. https://doi.org/10.3390/md13052967
Debro LH, Ward HB (1979). Antibacterial activity of freshwater green algae. Journal of Medicinal Plants Research 36:375-378. https://10.1055/s-0028-1097284
Dionisio KL, Phillips K, Price PS, Grulke CM, Williams A, Biryol D, Hong T, Isaacs KK (2018). The chemical and products database is a resource for exposure-relevant data on chemicals in consumer products. Scientific Data 5:180125. https://10.1038/sdata.2018.125
Dogan A, Siyakus G, Severcan F (2007). FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food Chemistry 100:1106-14. https://doi.org/10.1016/j.foodchem.2005.11.017
Elshobary ME, El-Shenody RA, Ashour M, Zabed HM, Qi X (2020). Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minute. Food Bioscience 35:100567. https://doi.org/10.1016/J.FBIO.2020.100567
Elufioye TO, Obuotor EO, Agbedahunsi JM, Adesanya SA (2017). Anticholinesterase constituents from the leaves of Spondias mombin L. (Anacardiaceae). Biologics: Targets and Therapy 11:107-114. https://doi.org/10.2147/BTT.S136011
EMBL-EBI (2024). European Bioinformatics Institute is one of the six sites of the European Molecular Biology Laboratory. Retrieved 2024 March 28 from https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL1836651/.
Encarnacao T, Pais AACC, Campos MG, Burrows HD (2015). Cyanobacteria and microalgae: A renewable source of bioactive compounds and other chemicals. Science Progress 98:145-168. https://doi.org/10.3184/003685015X14298590596266
Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, Toubarro D, Barros AIRNA (2023). Exploring the benefits of phycocyanin: From Spirulina cultivation to its widespread applications. Pharmaceuticals (Basel) 16:592. https://doi.org/10.3390/ph16040592
Feroz B (2018). Saponins from Marine Macroalgae: A Review. Journal of Marine Science: Research and Development 8:255. https://doi.org/10.4172/2155-9910.1000255
Gupta RK (2012a). Algae of India (Volume 1) A checklist of Cyanoprokaryota (Cyanophyceae). Botanical Survey of India, Kolkata.
Gupta RK (2012b). Algae of India (Volume 2). A checklist of Chlorophyceae, Xanthophyceae, Chlorophyceae, and Euglenophyceae. Botanical survey of India, Kolkata.
Harborne A (1998). Phytochemical methods a guide to modern techniques of plant analysis: Springer science and business media, German.
Heatley NG (1994). A method for the assay of penicillin. Biochemistry 38:61-65. https://doi.org/10.1002/jps.3030351207
Hemalatha A, Girija K, Parthiban C, Saranya C, Anantharaman P (2013). Antioxidant properties and total phenolic content of a marine diatom Navicula clavate and green microalgae, Chlorella marina and Dunaliella salina. Advances in Applied Science Research 4:151-157.
Hemmalakshmi S, Priyanga S Devaki K (2017). Fourier transform infra-red spectroscopy analysis of Erythrina variegata L. Journal of Pharmaceutical Sciences and Research 9:2062-2067.
Jayaprakasam B, Zhang Y, Seeram NP, Nair MG (2003). Growth inhibition of human tumor cell lines by with anolides from Withania somnifera leaves. Life Sciences 74:125-132. https://10.1016/j.lfs.2003.07.007
Jayashree A, Jayashree S, Thangaraju N (2016). Chlorella vulgaris and Chlamydomonas reinhardtii: Effective Antioxidant, Antibacterial and Anticancer Mediators. Indian Journal of Pharmaceutical Sciences 78:575-581.
Joseph B (2011). Review on nutritional, medicinal and pharmacological properties of guava (Psidium guajava Linn.). International Journal of Pharma and Bio Sciences 2:53-69.
Jung JC, Lim E, Lee Y, Kang JM, Kim H, Jang S, Oh S, Jung M (2009). Synthesis of novel trans-stilbene derivatives and evaluation of their potent antioxidant and neuroprotective effects. European Journal of Medicinal Chemistry 44:3166-3174. https://doi.org/10.1016/j.ejmech.2009.03.011
Kaur N, Chaudhary J, Jain A, Kishore L (2011). Stigmasterol:a comprehensive review. International Journal of Pharmaceutical Sciences and Research 2:2259-2265.
Kavitha J, Palani S (2016). Phytochemical screening, GC-MS analysis and antioxidant activity of marine algae Chlorococcum humicola. World Journal of Pharmacy and Pharmaceutical Sciences 6:1154-1167.
Khan MI, Shin JH, Kim JD (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x
Kirtania K, Bhattacharya S (2012). Application of the distributed activation energy model to the kinetic study of pyrolysis of the fresh water algae Chlorococcum humicola. Bioresource Technology 107:476-81. https://doi.org/10.1016/j.biortech.2011.12.094
Klecker C, Nair LS (2017). Matrix chemistry controlling stem cell behavior. Biology and Engineering of Stem Cell Niches 2017:195-213. https://doi.org/10.1016/b978-0-12-802734-9.00013-5
Kokate CK (2000). Preliminary phytochemical screening- Practical Pharmacognosy. Nirali Prakashan, Pune, India.
Koukouraki P, Tsoupras A, Sotiroudis G, Demopoulos CA, Sotiroudis TG (2020). Antithrombotic properties of Spirulina extracts against platelet-activating factor and thrombin. Food Bioscience 37:100686. https://doi.org/10.1016/j.fbio.2020.100686
Krishnamurthy SR, Sarala P (2012). Determination of nutritive value of Zizipus rugosa Lamk: A femine edible fruit and medicinal plant of Western Ghats. Indian Journal of Natural Products and Resources 3:20-27.
Krishnamurthy V (2000). Algae of India and neighbouring countries. Volume 1. Chlorophycota. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
Kuda T, Tsunekawa M, Goto H, Araki Y (2005). Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. Journal of Food Composition and Analysis 18:625-633. https://doi.org/10.1016/j.jfca.2004.06.015
Laurens LML, Wolfrum EJ (2011). Feasibility of spectroscopic characterization of algal lipids: chemometric Correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. BioEnergy Research 4:22-35. https://doi.org/10.1007/s12155-010-9098-y
Levasseur W, Perré P, Pozzobon VA (2020). Review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances 41:107545. http://dx.doi.org/10.1016/j.biotechadv.2020.107545
Liu K (2017). Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination. Algal Research 25:307-321. https://doi.org/10.1016/j.algal.2017.04.014
Lyons MA, Samman S, Gatto L, Brown AJ (1994). Rapid hepatic metabolism of 7-ketocholesterol in vivo: implications for dietary oxysterols. Journal of Lipid Research 40:1846-57.
Macakova K, Koleckar V, Cahlíkova L, Chlebek J, Hostalkova A, Kuca K, Jun D, Opletal L (2014). Tannins and their Influence on Health. In: Choudhary MI, Perry G, Rahman A (Eds). Recent Advances in Medicinal Chemistry. Elsevier, Bentham Science Publishers: San Antonio, TX, USA pp 159-208.
Mahato SB, Sen, S (1997). Advances in triterpenoid research, 1990-1994. Phytochemistry 44:1185-236. https://doi.org/10.1016/s0031-9422(96)00639-5
Mann DG, Vanormelingen P (2013). An inordinate fondness? The number, distributions, and origins of diatom species. Journal of Eukaryotic Microbiology 60:414-420. https://doi.org/10.1111/jeu.12047
Mecozzi M, Pietroletti M, Scarpiniti M, Acquistucci R, Conti ME (2012). Monitoring of marine mucilage formation in Italian seas investigated by infrared spectroscopy and independent component analysis. Environmental Monitoring and Assessment 184:6025-6036. https://doi.org/10.1007/s10661-011-2400-4
Mekki-Berrada A, Bennici S, Gillet JP, Couturier JL, Dubois JL, Auroux A (2013). Fatty acid methyl esters into nitriles: acid-base properties for enhanced catalysts. Journal of Catalysis 306:30-37. https://doi.org/10.1016/j.jcat.2013.05.032
Mellado-Mojica E, González de la VEL, López MG (2017). Fructan active enzymes (FAZY) activities and biosynthesis of fructooligosaccharides in the vacuoles of Agave tequilana Weber Blue variety plants of different age. Planta 245:265-281. https://doi.org/10.1007/s00425-016-2602-7
Meneghini G (1843). Monographia Nostochinearum italicarum addito specimine de Rivulariis. Mem. Memorie della Reale accademia delle scienze di Torino 25:1-143.
Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N (2019). Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants 8:279. https://doi.org/10.3390/plants8080279
Miao G, Zhu, C, Wang J, Tan Z, Wang L, Liu J, Kong L, Sun Y (2015). Efficient one-pot production of 1,2-propanediol andethylene glycol from microalgae (Chlorococcum sp.) in water. Green Chemistry 17:2538-2544. https://doi.org/10.1039/x0xx00000x
Mishor E, Amir D, Weiss T, Honigstein D, Weissbrod A, Livne E, … Sobel N (2021). Sniffing the human body volatile hexadecanal blocks aggression in men but triggers aggression in women. Science Advances 7(47):eabg1530. https://doi.org/10.1126/sciadv.abg1530
Moreira JB, Vaz BDS, Cardias BB, Cruz CG, Almeida ACAD, Costa JAV, Morais MGD (2022). Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. Polysaccharides 3:441-457. https://doi.org/10.1016/j.btre.2023.e00818
Moreno-Garrido I (2008). Microalgae immobilization: current techniques and uses. Bioresource Technology 99:3949-3964. https://doi.org/10.1016/j.biortech.2007.05.040
National Cancer Institute (2023). What is Cancer? Retrieved 2023 September 13 from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 26397, Ethyl heptadecanoate. Retrieved 2023 March 13 from: https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-heptadecanoate
National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 984, Hexadecanal. Retrieved 2023 March 13 from: https://pubchem.ncbi.nlm.nih.gov/compound/Hexadecanal
Nithya M, Ragavendran C, Natarajan D (2018). Antibacterial and free radical scavenging activity of a medicinal plant Solanum xanthocarpum. International Journal of Food Properties 21:313-327. https://doi.org/10.1080/10942912.2017.1409236
Olasehinde TA, Olaniran AO, Okoh AI (2020). Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. Journal of Food Biochemistry 5(3):e13395. http://dx.doi.org/10.1111/jfbc.13395.
Patil AG, Koli SP, Patil DA, Phatak AV (2012). Evaluation of extraction techniques with various solvents to determine extraction efficiency of selected medicinal plants. International Journal of Pharmaceutical Sciences and Research 3(8):2607-2612. http://dx.doi.org/10.13040/IJPSR.0975-8232.3(8).2607-12
Perumal GM, Anand N (2008). Manual of freshwater algae of Tamil Nadu. Bishen Singh Mahendra pal Singh, Dehra Dun.
Philipose MT (1967). Chlorococcales. Indian Council of Agricultural Research, New Delhi
Ponnuswamy I, Madhavan S, Shabudeen S (2013). Isolation and characterization of green microalgae for carbon sequestration, wastewater treatment and bio-fuel production. International Journal of Bio-Science and Bio-Technology 5(2):17-26.
Pramanayakam A, Panneerselvam A (2021). Pharmacognostical, Phytochemical Screening, Formulation and Evaluation of Nanophytosomes of Aqueous Extracts of Trigonella foenum-graecum., (Fabaceae). International journal of pharmaceutical sciences review and research 70(1):162-170. https://doi.org/10.1038/s41598-023-31888-y
Qasem W, Mohamed EA, Hamed AA, El-Sayed AEKB, Salah-El Din RA (2016). Antimicrobial and anticancer activity of some microalgae species. Egyptian Journal of Phycology 17:33-49.
Radhika D, Veerabahu C, Priya R (2012). Antibacterial activity of some selected seaweeds from the Gulf of Mannar coast, South India. Asian Journal of Pharmaceutical and Clinical Research 5(4):89-90.
Ramaswamy U, Velusamy S, Devaraj NS (2020). Cytotoxicity and apoptosis of human colon carcinoma cell line (HT29 Cells), treated with methanolic extract of Chlorococcum humicola. In: Sadhukhan PC, Premi S (Eds). Biotechnological Applications in Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-3453-9_5
Ramos-Romero S, Torrella JR, Pagès T, Viscor G, Torres JL (2021). Edible microalgae and their bioactive compounds in the prevention and treatment of metabolic alterations. Nutrients 13(2):563. https://doi.org/10.3390/nu13020563
Rathore M (2009). Nutrient content of important fruit trees from arid zone of Rajasthan. Journal of Horticultural Sciences 1:103-108. https://doi.org/10.5897/JHF.9000079
Rehman, Zia UR, Anal AK (2019). Enhanced lipid and starch productivity of microalga (Chlorococcum sp. TISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnology Reports 21(2019): e00298. https://doi.org/10.1016/j.btre.2018.e00298
Rohman A, Sismindari, Erwanto Y, Che Man YB (2011). Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Science 88:91-5. https://doi.org/10.1016/j.meatsci.2010.12.007
Rontani JF, Nassiry M, Mouzdahir A (2007). Free radical oxidation (autoxidation) of α-tocopherol (vitamin E): A potential source of 4, 8, 12, 16-tetramethylheptadecan-4-olide in the environment. Organic Geochemistry 38:37-47. https://doi.org/10.1016/j.orggeochem.2006.09.004
Rotaru R, Samoila P, Lupu N, Grigoras M, Harabagiu V (2017). Maghemite (γ-Fe2O3)/goethite (α-FeOOH) ferromagnetic composites obtained through ultrasonication. Revue Roumaine de Chimie 62:131-138.
Ryu KR, Choi JY, Chung S, Kim DH (2011). Anti-scratching behavioural effect of the essential oil and phytol isolated from Artemisia princeps Pamp. in mice. Planta Medica 77:22-26. https://doi.org/10.1055/s-0030-1250119
Saha SK, McHugh E, Murray P, Walsh DJ (2015). Microalgae as a source of nutraceuticals. In: Botana LM, Alfonso A (Eds). Phycotoxins: Chemistry and Biochemistry, 2nd ed, John Wiley & Sons Ltd, Chichester, UK, pp 255-292.
Salem O, El-Assi R, Saleh M (2020). Bioactive constituents of three algal species extracts and their anticancer activity against human cancer cell lines. Egyptian Journal of Phycology 21:1-18. https://10.21608/egyjs.2020.132190
Sandgruber F, Gielsdorf A, Schenz B, Müller SM, Schwerdtle T, Lorkowski S, Griehl C, Dawczynski C (2023). Variability in macro- and micronutrients of 15 rarely researched microalgae. Marine Drugs 21:355. https://doi.org/10.3390/md21060355
Santhoshkumar K, Prasanthkumar S, Ray JG (2016). Chlorococcum humicola (Nageli) Rabenhorst as a renewable source of bioproducts and biofuel. Journal of Plant Studies 5:48-57.
Santos CC, Salvadori MS, Mota VG, Costa LM, de Almeida AA, de Oliveira GA, … de Almeida RN (2013). Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Journal of Neuroscience 2013:949452. https://doi.org/10.1155/2013/949452
Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences 26:709-722. https://doi.org/10.1016/j.sjbs.2017.11.003
Satpati GG, Gorain PC, Paul I, Pal R (2016). An integrated salinity-driven workflow for rapid lipid enhancement in green microalgae for biodiesel application. RSC Advances 6(113):112340-112355.
Shaheen N, Qureshi NA, Ashraf A, Hamid A, Iqbal A, Fatima H (2020). In vitro anti-leishmanial activity of Prunus armeniaca fractions on Leishmania tropica and molecular docking studies. Journal of Photochemistry and Photobiology B 213:112077. https://10.1016/j.jphotobiol.2020.112077
Sharif N, Munir N, Saleem F, Aslam F, Naz S (2014). Prolific anticancer bioactivity of algal extracts cell. American Journal of Drug Delivery 3:1-8.
Shiels K, Tsoupras A, Lordan R, Nasopoulou C, Zabetakis I, Murray P, Saha SK (2021). Bioactive lipids of marine microalga Chlorococcum sp. SABC 012504 with anti-inflammatory and anti-thrombotic activities. Marine Drugs 9(1):28. https://doi.org/10.3390/md19010028
Sofowara E (1993). Phytochemical screening of medicinal plants and traditional medicine in Africa, Ibadan: Spectrum Books Ltd., Ibadan
Subagyono DJN, Marshall M, Fei Y, Jackson WR, Chaffee AL (2015). Thermo-chemical reactions of algae, grape marc and wood chips using a semi-continuous/flow-through system. Fuel 158:927-936. http://dx.doi.org/10.1016/j.fuel.2015.06.026
Sutherland DL, Ralph PJ (2019). Microalgal bioremediation of emerging contaminants - Opportunities and challenges. Water Research 164:114921. https://doi.org/10.1016/j.watres.2019.114921
Thawabteh A, Juma S, Bader M, Karaman D, Scrano L, Bufo S. A, Karaman R (2019). The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 11656. https://doi.org/10.3390/toxins11110656
Uma R, Sivasubramanian V, Devaraj SN (2011). Evaluation of in vitro antioxidant and antiproliferative activity of green microalgae Desmococcus olivaceous and Chlrococcum humicola. Journal of Algal Biomass Utilization 2(3):82-93.
Visweswari G, Christopher R, Rajendra W (2013). Phytochemical screening of active secondary metabolites presents in Withania somnifera root: role in traditional medicine. Indian Journal of Pharmaceutical Sciences 4:2770-2776.
Yamaguchi K (1997). Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review. Journal of Applied Phycology 8:487-502. https://doi.org/10.1007/BF02186327
Yusof YA, Saad SM, Makpol S, Shamaan NA, Ngah WZ (2010). Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis. Clinics (Sao Paulo) 65:1371-1377. https://10.1590/s1807-59322010001200023
Zhang DH, Lee YK (1999). Ketocarotenoid production by a mutant of Chlorococcum sp. in an outdoor tubular photobioreactor. Biotechnology Letters 21:7-10. https://doi.org/10.1007/s002530000526
Zhu Y, Zhao X, Zhang X, Liu H, Ao Q (2021). Amino acid, structure and antioxidant properties of Haematococcus pluvialis protein hydrolysates produced by different proteases. International Journal of Food Science & Technology 56:185-95. https://doi.org/10.1111/ijfs.14618
Zhu YZ, Liu JW, Wang X, Jeong IH, Ahn YJ, Zhang CJ (2018) Anti-BACE1 and antimicrobial activities of steroidal compounds isolated from marine Urechis unicinctus. Marine Drugs 16(3):94. https://10.3390/md16030094

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Savithra NAGABHUSHANA, Aron S.K. YOHANNAN, Somashekar G. MALAMMANAVAR, Palanisamy MOOKKAN, Kanivalan IWARx

This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.