Phytochemical study and evaluation of the antibacterial and anti-biofilm activities of ethanolic extracts of Lavandula mairei and Pulicaria mauritanica in the fight against nosocomial infections
DOI:
https://doi.org/10.55779/nsb17112262Keywords:
antibacterial and anti-biofilm activity, Lavandula mairei Humbert, nosocomial infection, phytochemicals, Pulicaria mauritanica CossAbstract
The rise of multi-resistant strains in nosocomial infections poses a severe public health challenge, largely driven by biofilm formation, which sustains infections in hospital settings. Medicinal plants offer a potential solution to combat these resistant infections. This study investigates the antibacterial and anti-biofilm properties of two Moroccan plants: Lavandula mairei Humbert and Pulicaria mauritanica Coss. The chemical composition of these plants was analyzed through phytochemical screening, mineral analysis, infrared spectroscopy, and HPLC-UV. The Minimum Inhibitory Concentration (MIC) was performed by microdilution in order to evaluate the antibacterial activity of the extracts against the bacterial strains: Staphylococcus aureus, Escherichia coli, Bacille cereus, Acinetobacter baumannii and Pseudomonas aeruginosa. The anti-biofilm activity was measured by evaluating the biomass of the biofilm formed by P. aeruginosa and E. coli using the crystal violet staining method. The screening phytochemical tests revealed that both plants contain tannins, flavonoids, sterols, and triterpenes, but lack alkaloids and saponins. Mineral analysis showed high levels of essential elements such as calcium, potassium, and zinc, with heavy metals within safe limits. Thermogravimetric analysis indicated dehydration and organic matter loss at specific temperature ranges. HPLC-UV identified phenolic compounds, including quercetin and caffeic acid, with higher concentrations in Pulicaria mauritanica. relative to antibacterial activity, MIC against the bacterial strains tested, demonstrated varying efficacy across bacterial strains. Anti-biofilm activity against P. aeruginosa revealing a reduction in biofilm biomass. These findings highlight the potential of Lavandula mairei and Pulicaria mauritanica as natural alternatives to address antibiotic resistance in nosocomial infections.
Metrics
References
Abdellatif F, Akram M, Begaa S, Messaoudi M, Benarfa A, Egbuna C, … Simal-Gandara J (2021). Minerals, essential oils, and biological properties of Melissa officinalis L. Plants 10(6):1066. https://doi.org/10.3390/plants10061066
Ahadi M, Shams AH, Yadollahi M (2023). Effect of COVID-19 pneumonia infection control protocols on nosocomial infection incidence in trauma patients. Chinese Journal of Traumatology - English Edition 26(5):284-289. https://doi.org/10.1016/j.cjtee.2023.05.001
Ahanger MA, Ahmad P (2019). Role of mineral nutrients in abiotic stress tolerance: Revisiting the associated signaling mechanisms. In: Plant Signaling Molecules Elsevier Inc. https://doi.org/10.1016/B978-0-12-816451-8.00016-2
Andrade M, Benfeito S, Soares P, Magalhães e Silva D, Loureiro J, Borges A, Borges F, Simões M (2015). Fine-tuning of the hydrophobicity of caffeic acid: studies on the antimicrobial activity against Staphylococcus aureus and Escherichia coli. RSC Advances 5(66):53915-53925. https://doi.org/10.1039/C5RA05840F
Babincev LM (2017). Heavy metals in soil and application of new plant materials in the process of phytoremediation. Journal of Bioremediation & Biodegradation 08(06):6-10. https://doi.org/10.4172/2155-6199.1000413
Bammou M, Dine E, Bouhlali T, Sellam K, Ramchoun M, Mcdonald AG, Ouzidan Y, Ibijbijen J, Rhaffari L El, Nassiri L (2019). Investigation on chemical composition, antioxidant and antimicrobial potential of Pulicaria mauritanica essential oil applied by direct addition or vapor contact. American Journal of Essential Oils and Natural Products 7(1):7-13.
Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research 196:44-68. https://doi.org/10.1016/j.micres.2016.12.003
Bauer AW, Kirby WMM, Sherris JC, Turck M (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45(4):493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
Cristofari G, Znini M, Majidi L, Bouyanzer A, Al-Deyab SS, Paolini J, Hammouti B, Costa J (2011). Chemical composition and anti-corrosive activity of Pulicaria mauritanica essential oil against the corrosion of mild steel in 0.5 M H2SO4. International Journal of Electrochemical Science 6(12):6699-6717. https://doi.org/10.1016/S1452-3981(23)19713-6
El Hamdaoui A, Msanda F, Boubaker H, Leach D, Bombarda I, Vanloot P, … El Mousadik A (2018). Essential oil composition, antioxidant and antibacterial activities of wild and cultivated Lavandula mairei Humbert. Biochemical Systematics and Ecology 76:1-7. https://doi.org/10.1016/j.bse.2017.11.004
Fernandes D, Cardoso S, Miranda J, Duarte J, Santos MF (2024). Prediction of nosocomial infections associated with surgical interventions. Procedia Computer Science 231(2022):433-438. https://doi.org/10.1016/j.procs.2023.12.230
Ghenabzia I, Hemmami H, Amor I Ben, Zeghoud S, Seghir B Ben, Hammoudi R (2023). Different methods of extraction of bioactive compounds and their effect on biological activity: A review. International Journal of Secondary Metabolite 10(4):469-494. https://doi.org/10.21448/IJSM.1225936
Gherib M, Bekhechi C, Bekkara FA, Bighelli A, Casanova J, Tomi F (2016). Chemical composition and antimicrobial activity of the essential oil from aerial parts of Algerian Pulicaria mauritanica. Natural Product Communications 11(1): 934578X1601100. https://doi.org/10.1177/1934578X1601100132
Gherib M, Chahrazed B, El-Haci IA, Chaouche TM, Bekkara FA- (2016). Antioxidant and antibacterial of aerial part essential oil and some organic extracts from the Algerian medicinal plant Pulicaria mauritanica Coss. International Journal of Pharmaceutical Sciences and Research 7(1):76-84. https://doi.org/10.13040/IJPSR.0975-8232.7(1).76-84
Hamdouch A, Asdadi A, Achemchem F, & Chebli B (2018). Phytochemical analysis, antifungal, antibacterial and antioxidant properties of Pulicaria mauritanica from south-east of Morocco. Journal of Materials and Environmental Sciences 2508(6):1762-1770. https://doi.org/10.26872/jmes.2018.9.6.196
He ZL, Yang XE, Stoffella PJ (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology 19(2-3):125-140. https://doi.org/10.1016/j.jtemb.2005.02.010
Héral B, Stierlin E, Fernandez X, Michel T (2021). Phytochemicals from the genus Lavandula: A review. Phytochemistry Reviews 20(4):751-771. https://doi.org/10.1007/s11101-020-09719-z
Kabata-Pendias A, Mukherjee AB (2007). Trace elements from soil to human. Springer Science & Business.
Kabata-Pendias A, Pendias H (2001). Trace elements in soils and plants. 3rd Ed., Boca Raton, CRC Press. http://lib.ugent.be/catalog/rug01:000842790
Kępa M, Miklasińska-Majdanik M, Wojtyczka RD, Idzik D, Korzeniowski K, Smoleń-Dzirba J, Wąsik TJ (2018). Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Research International 2018:1-9. https://doi.org/10.1155/2018/7413504
Khan HA, Ahmad A, Mehboob R (2015). Nosocomial infections and their control strategies. Asian Pacific Journal of Tropical Biomedicine 5(7):509-514. https://doi.org/10.1016/j.apjtb.2015.05.001
Kloke A, Sauerbeck DR, Vetter H (1984). The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Changing Metal Cycles and Human Health. Springer Berlin Heidelberg, pp 113-141. https://doi.org/10.1007/978-3-642-69314-4_7
Laktib A, Nayme K, Hamdaoui A El, Timinouni M, Hassi M, Aitalla A, … Hamadi F (2022). Antibacterial activity of Lavandula mairei Humbert essential oil against carbapenem- resistant Acinetobacter baumannii. Mediterranean Journal of Infection Microbes and Antimicrobials 11. https://doi.org/10.4274/mjima.galenos.2021.2021.3
Liu LL, Yang JL, Shi Y (2010). Phytochemicals and biological activities of Pulicaria species. Chemistry & Biodiversity 7(2):327-349.
Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M (2019). Developing natural products as potential anti-biofilm agents. Chinese Medicine 14(1):11. https://doi.org/10.1186/s13020-019-0232-2
Misra SG, Mani D (1991). Soil Pollution Ashish Publishing House.
Mukomena PN, Munsaka S, Simunza M, Kwenda G, Yamba K, Kabwe J, … Muma JB (2023). Nosocomial infections and associated risk factors at two tertiary healthcare facilities in Lusaka and Copperbelt Provinces, Zambia. Scientific African 20. https://doi.org/10.1016/j.sciaf.2023.e01644
Ousaid FE, Guenaou I, Nait Irahal I, Lahlou FA, Errami A, Ait Si L, … Bourhim N (2024). The chemical composition, in vitro, and in silico studies of Lavandula mairei essential oil. Scientific African 23:e02062. https://doi.org/10.1016/j.sciaf.2024.e02062
Porchera BR, da Silva CM, Miranda RP, Gomes ARQ, Fernandes PH dos S, de Menezes CGO, … Brígido HPC (2024). Linezolid and vancomycin for nosocomial infections in pediatric patients: a systematic review. Jornal de Pediatria 100(3):242-249. https://doi.org/10.1016/j.jped.2023.08.011
Radi FZ, Bencheikh N, Bouhrim M, Noman OM, Mothana RA, Ibrahim MN, … Zair T (2023). Phytochemical analysis, antioxidant, antimicrobial and antihyperglycemic activities and adverse effect assessment of Thymus zygis L. and Thymus willdenowii Bois. Journal of Biological Regulators and Homeostatic Agents 37(11):6113-6130. https://doi.org/10.23812/j.biol.regul.homeost.agents.20233711.584
Radi FZ, Bencheikh N, Bouhrim M, Saleh A, Al kamaly O, Parvez MK, … Zair T (2023). Phytochemical analysis, antioxidant, and antihyperglycemic activities of Crataegus monogyna Jacq aqueous extract. Natural Product Communications 18(8):1934578X231195157. https://doi.org/10.1177/1934578X231195157
Rahmani S, Naraki K, Roohbakhsh A, Hayes AW, Karimi G (2023). The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Science and Nutrition 11(1):39-56. https://doi.org/10.1002/fsn3.3041
Rice-Evans CA, Miller NJ, Paganga G (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20(7):933-956. https://doi.org/10.1016/0891-5849(95)02227-9
Sabiri M, Barbouchi M, Benali T, Hamdi ZM, Riff O, Elhourri M, Amechrouq A (2022). Phenolic content, antioxidant and antibacterial activities of two endemic medicinal plants from morocco: Pulicaria mauritanica coss and Lavandula mairei humbert. Fresenius Environmental Bulletin 31(04):4336-4342.
Saising J, Dube L, Ziebandt A-K, Voravuthikunchai SP, Nega M, Götz F (2012). Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrobial Agents and Chemotherapy 56(11):5804-5810. https://doi.org/10.1128/AAC.01296-12
Schulze ED, Lawlor D, Lawlor K, Beck E, Lawlor G, Müller-Hohenstein K (2005). Plant ecology. Springer Berlin, Heidelberg.
Senhaji B, Chebli B, Mayad E, Hamdouch A, Heimeur N, Chahid A, Ferji Z (2017). Phytochemical screening, quantitative analysis and antioxidant activity of Asteriscus imbricatus and Pulicaria mauritanica organic extracts. International Food Research Journal 24(6):2482-2489.
Shahidi F, Yeo J (2018). Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International Journal of Molecular Sciences 19(6):1-16. https://doi.org/10.3390/ijms19061573
Shree P, Singh CK, Sodhi KK, Surya JN, & Singh DK (2023). Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Medicine in Microecology 16:100084. https://doi.org/10.1016/j.medmic.2023.100084
Skoog DA, Crouch SR, Holler FJ (2007). Principles of instrumental analysis. In: Thomson Brooks/Cole (6th ed.) Thomson Brooks/Cole. https://worldcat.org/title/423542548
Stanojkovic-Sebic A, Pivica R, Josica D, Dinica Z, Stanojkovic A (2015). Heavy metals content in selected medicinal plants commonly used as components for herbal formulations. Journal of Agricultural Sciences 21:317-325. https://doi.org/10.1501/Tarimbil
Stuart BH (2004). Infrared spectroscopy: fundamentals and applications. In: Infrared Spectroscopy: Fundamentals and Applications Wiley. https://doi.org/10.1002/0470011149
Suksatan W, Jasim SA, Widjaja G, Jalil AT, Chupradit S, Ansari MJ, Mustafa YF, Hammoodi HA, Mohammadi MJ (2022). Assessment effects and risk of nosocomial infection and needle sticks injuries among patents and health care worker. Toxicology Reports 9:284-292. https://doi.org/10.1016/j.toxrep.2022.02.013
Ude J, Tripathi V, Buyck JM, Söderholm S, Cunrath O, Fanous J, Claudi B, Egli A, Schleberger C, Hiller S, Bumann D (2021). Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 118(31):1-8. https://doi.org/10.1073/pnas.2107644118
Vipin C, Mujeeburahiman M, Ashwini P, Arun AB, Rekha P ‐D. (2019). Anti‐biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Letters in Applied Microbiology 68(5):464-471. https://doi.org/10.1111/lam.13129
Wang J, Wei X, & Fan M (2018). Assessment of antibiotic susceptibility within lactic acid bacteria and coagulase‐negative staphylococci isolated from Hunan smoked pork, a naturally fermented meat product in China. Journal of Food Science 83(6):1707-1715. https://doi.org/10.1111/1750-3841.14147
Xu T, Gherib M, Bekhechi C, Atik-Bekkara F, Casabianca H, Tomi F, Casanova J, Bighelli A (2015). Thymyl esters derivatives and a new natural product modhephanone from Pulicaria mauritanica Coss. (Asteraceae) root oil. Flavour and Fragrance Journal 30(1):83-90. https://doi.org/10.1002/ffj.3223
Yang H, Yan R, Chen H, Lee DH, Zheng C (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13):1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
Zárate-Quiñones RH, Custodio M, Orellana-Mendoza E, Cuadrado-Campó WJ, Grijalva-Aroni PL, Peñaloza R (2021). Determination of toxic metals in commonly consumed medicinal plants largely used in Peru by ICP-MS and their impact on human health. Chemical Data Collections 33:100711. https://doi.org/10.1016/j.cdc.2021.100711
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maryame SABIRI, Fatima Zahrae RADI, Rabie KACHKOUL, Jamila EL KARKOURI , Mouhcine HAYANI, Mohamed R. KACHMAR, Ali AMECHROUQ

This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.