Evaluation of the resilience of Rhizophagus intraradices inoculated on hybrid Brachiaria grass ‘Mavuno’

Authors

  • Aracely MENA-ECHEVARRÍA National Institute of Forestry and Livestock Agricultural Research, General Terán Experimental Field, km 31, Highway Montemorelos-China, General Terán, Nuevo León, CP 67400 (MX) https://orcid.org/0000-0003-4615-442X
  • Carlos M. RAMOS-CRUZ National Institute of Forestry and Livestock Agricultural Research, General Terán Experimental Field, km 31, Highway Montemorelos-China, General Terán, Nuevo León, CP 67400 (MX) https://orcid.org/0000-0003-0537-0521
  • Raúl RODRÍGUEZ-GUERRA National Institute of Forestry and Livestock Agricultural Research, General Terán Experimental Field, km 31, Highway Montemorelos-China, General Terán, Nuevo León, CP 67400 (MX) https://orcid.org/0000-0003-0537-0521
  • Martin ESPINOSA-RAMÍREZ National Institute of Forestry and Livestock Agricultural Research, Río Bravo Experimental Field, Highway Matamoros-Reynosa km 61, Río Bravo, Tamaulipas, CP 88900 (MX) https://orcid.org/0000-0001-5031-3249
  • Blanca E. SANTIAGO-MEJÍA National Institute of Forestry and Livestock Agricultural Research, Río Bravo Experimental Field, Highway Matamoros-Reynosa km 61, Río Bravo, Tamaulipas, CP 88900 (MX) https://orcid.org/0000-0001-5187-3053

DOI:

https://doi.org/10.55779/nsb17112244

Keywords:

arbuscular mycorrhizal fungi, biofertilizers, persistence, replication

Abstract

The technology to produce mycorrhizal biofertilizers has given a remarkable impulse, but it is necessary to know the resilience of mycorrhizal inoculums. The objective was to evaluate the multiplication capacity and persistence of the mycorrhizal species Rhizophagus intraradices (R. intraradices) on the hybrid Brachiaria grass ‘Mavuno’. The number of spores, the spatial distribution of spores in the beds and the percentage and intensity of root colonization in the two propagation beds of R. intraradices were determined. Chemical and physical characteristics of the substrate in each bed were analyzed. Student’s t-test for two independent samples (p < 0.05) and chi-squared test were used for data analysis. R. intraradices species reproduced more spores g-1 of substrate in both beds in 2023. In the years 2022 and 2023, the number of spores in bed 1 was 26% and 41% higher than in bed 2, respectively. The spatial distribution of spores in the beds was more heterogeneous in 2023. Nitrogen, phosphorus and organic matter contents differed between the substrates used, which may have influenced the efficacy of R. intraradices species. A high potential for multiplication and resilience of R. intraradices reflected under the experimental conditions studied was found.

Metrics

Metrics Loading ...

References

Basiru S, Hijri M (2022). The potential applications of commercial arbuscular mycorrhizal fungal inoculants and their ecological consequences. Microorganisms 10:1897. https://doi.org/10.3390/microorganisms10101897

Carrillo-Saucedo SM, Puente-Rivera J, Montes-Recinas S, Cruz-Ortega R (2022). Las micorrizas como una herramienta para la restauración ecológica [Spanish Mycorrhizae as a tool for ecological restoration]. Acta Botánica Mexicana 129:e1932. https://doi.org/10.21829/abm129.2022.1932

Durán-Prado A, Aguirre-Medina JF, González-Cu G, Peña del Río MA, Schonhoven-Cordero E (2001). Producción in vivo de micorriza arbuscular Glomus intraradices con Brachiaria brizantha como hospedero en camas reproductoras [Spanish In vivo production of arbuscular mycorrhizae Glomus intraradices with Brachiaria brizantha as host in breeding beds]. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Veracruz. México. https://books.google.com.mx/books?id=A6lYewAACAAJ

Elliott AJ, Daniell TJ, Cameron DD, Field KJ (2021). A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients. Plants People Planet 3(5):588-599. http://doi.org/10.1002/ppp3.10094

Floc’h JB, Hamel C, Laterrière M, Tidemann B, St-Arnaud M, Hijri M (2022). Long-term persistence of arbuscular mycorrhizal fungi in the rhizosphere and bulk soils of non-host brassica napus and their networks of co-occurring microbes. Frontiers in Plant Science 13: 828145. https://doi.org/10.3389/fpls.2022.828145

Gerdemann JW, Nicholson TH (1963). Spore of mycorrhizae endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46(2):235-244. https://doi.org/10.1016/S0007-1536(63)80079-0

Gustafson DJ, Casper BB (2004). Nutrient addition affects AM fungal performance and expression of plant/fungal feedback in three serpentine grasses. Plant and Soil 259:9-17. https://doi.org/10.1023/B:PLSO.0000020936.56786.a4

Hart MM, Antunes PM, Chaudhary VB, Abbott LK (2018). Fungal inoculants in the field: Is the reward greater than the risk? Functional Ecology 32(1):126-135. https://doi.org/10.1111/1365-2435.12976

Islam MN, Germida JJ, Walley FL (2021). Survival of a commercial AM fungal inoculant and its impact on indigenous AM fungal communities in field soils. Applied Soil Ecology 166:103979. https://doi:10.1016/j.apsoil.2021.103979

Katan J, DeVay JE (1991). Soil solarization. CRC, Boca Raton, FL, USA, p 267.

Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, Fujiwara T (2016). Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant physiology 171(1):566-579. https://doi.org/10.1104/pp.16.00127

Liang SM, Zheng FL, Abd_Allah EF, Muthuramalingam P, Wu QS, Hashem A (2021) Spatial changes of arbuscular mycorrhizal fungi in peach and their correlation with soil properties. Saudi Journal of Biological Sciences 28(11):6495-6499. https://doi.org/10.1016/j.sjbs.2021.07.024.

Montesinos-Navarro A, Valiente-Banuet A, Verdú M (2019). Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions. Fungal Ecology 40:98-106. https://doi.org/10.1016/j.funeco.2018.05.003

Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2015). Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE19(4):e0127472. https://doi.org/10.1371/journal.pone.0127472

Pellegrino E, Nuti M, Ercoli L (2022). Multiple arbuscular mycorrhizal fungal consortia enhance yield and fatty acids of Medicago sativa: a two-year field study on agronomic traits and tracing of fungal persistence. Frontiers in Plant Science 14(13):814401. https://doi.org/10.3389/fpls.2022.814401

Qin Z, Zhang H, Feng G, Christie P, Zhang J, Li X, Gai J (2020). Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biology & Biochemistry 144:107790. https://doi.org/10.1016/j.soilbio.2020.107790.

Ramírez J, González P, Salazar X, LLanes D, Rivera R, Hernández A, Plana R (2017). Inoculación micorrízico arbuscular y reducción de la fertilización orgánica y nitrogenada en Megathyrsus maximus cv. Liconi [Spanish Arbuscular mycorrhizal inoculation and reduction of organic and nitrogen fertilization in Megathyrsus maximus cv. Liconi]. Pastos y Forrajes 40(2):1-9. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942017000200004&lng=es&tlng=es.

Rivera-Espinosa R, Fernández-Martín F, Martín-Martínez L, Fernández-Suárez K, González-Cañizares P, Rodríguez-Yon Y, Ortega E, Bustamante-González C (2018). Avances y retos en el manejo de la simbiosis micorrízica arbuscular, vía inoculación de cepas eficientes [Spanish Advances and challenges in the management of arbuscular mycorrhizal symbiosis via inoculation of efficient strains]. In: XXI Congreso Científico Internacional del Instituto Nacional de Ciencias Agrícolas, Varadero, Cuba.

Rodríguez-Yon JY, Arias-Pérez L, Medina-Carmona A, Mujica-Pérez Y, Medina-García LR, Fernández-Suárez K, Mena-Echevarría A (2015). Alternativa de la técnica de tinción para determinar la colonización micorrízica [Spanish Alternative staining technique for determining mycorrhizal colonization]. Cultivos Tropicales 36(2):18-21. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362015000200003&lng=es&tlng=es

Salomon MJ, Demarmels R, Watts-Williams SJ, McLaughlin MJ, Kafle A, Ketelsen C, Van der Heijden MGA (2022). Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Applied Soil Ecology 169:104225. https://doi.org/10.1016/j.apsoil.2021.104225

Stapleton JJ (1990). Physical effects of soil solarization-thermal inactivation of crop pests and pathogens and other soil changes caused by solarization. In: DeVay JE., Stapleton JJ, Elmore CL (Eds). Proc. of the First Int. Conference on Soil Solarization. FAO, Plant Protection and Production Paper No. 109. Rome. Amman pp 19-25.

Trouvelot A, Koughy K, Gianinazzi-Pearson V (1986). Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (Eds). Mycorrhizae. Physiology and Genetics, Paris. pp 217-221. https://www.scirp.org/reference/referencespapers?referenceid=1398644

Van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205(4):1406-1423. https://doi.org/10.1111/nph.13288

Downloads

Additional Files

Published

2025-02-27

How to Cite

MENA-ECHEVARRÍA, A., RAMOS-CRUZ, C. M., RODRÍGUEZ-GUERRA, R., ESPINOSA-RAMÍREZ, M., & SANTIAGO-MEJÍA, B. E. (2025). Evaluation of the resilience of Rhizophagus intraradices inoculated on hybrid Brachiaria grass ‘Mavuno’ . Notulae Scientia Biologicae, 17(1), 12244. https://doi.org/10.55779/nsb17112244

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb17112244